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SUMMARY

Intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC) are clinically 

disparate primary liver cancers with etiological and biological heterogeneity. We identified 

common molecular subtypes linked to similar prognosis among 199 Thai ICC and HCC patients 

through systems integration of genomics, transcriptomics, and metabolomics. While ICC and HCC 

share recurrently mutated genes, including TP53, ARID1A, and ARID2, mitotic checkpoint 

anomalies distinguish the C1 subtype with key drivers PLK1 and ECT2, whereas the C2 subtype is 

linked to obesity, T-cell infiltration and bile acid metabolism. These molecular subtypes are found 

in 582 Asian, but less so in 265 Caucasian patients. Thus, Asian ICC and HCC, while clinically 

treated as separate entities, share common molecular subtypes with similar actionable drivers to 

improve precision therapy.

Abstract

INTRODUCTION

Primary liver cancer consists of two main histologically-distinct subtypes, i.e., 

hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) confined within 

the liver, whose diagnoses and treatment decisions are uniquely based on their baseline 

clinical features. Diagnosis of HCC and ICC is traditionally based on radiologic, serologic 

and/or pathologic evaluations. Various HCC staging guidelines have been introduced to 

better triage patients for appropriate treatments, such as molecularly targeted therapies, but 

their effectiveness is limited, as evident by the recent setbacks of multiple failures of Phase 

III studies (Worns and Galle, 2014). While ICC is morphologically distinct from HCC, its 

classification has been of intense debate in recent years due to its complex histology and 
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biology (Banales et al., 2016; Bridgewater et al., 2014). It should be noted that these varying 

classification models do not distinguish tumors with unique tumor biology, which is 

necessary for applying effective therapies. Moreover, like many other solid cancers, both 

HCC and ICC are genetically and biologically heterogeneous, which makes them highly 

resistant to treatment, ranking them as the second most lethal malignancies worldwide 

(Theise, 2014; Wang and Thorrgeirsson, 2014).

The extensive inter-tumor genomic heterogeneity of HCC and ICC is attributed to the 

presence of complex, multifactorial etiologies, including environmental factors such as 

hepatitis B virus (HBV), hepatitis C virus (HCV), parasitic infections and chemical 

carcinogens. Other risk factors include an unhealthy lifestyle, such as cigarette smoking, 

excess alcohol intake and dietary factors (El-Serag, 2011), in addition to sex and race/ethnic 

disparities wherein liver cancer mainly affects men and is highly prevalent in Asian 

populations (http://globocan.iarc.fr/). HBV and HCV are the major causative etiological 

factors for HCC, accounting for up to 90% of liver cancer globally, while ICC is uncommon, 

except in South-East Asia, such as northeastern Thailand, where infection with liver fluke 

(Opisthorchis viverrini) is endemic and approximately 70% of liver cancers are ICC (Sripa 

et al., 2007). These global disparities may be attributed to the presence of different 

etiological factors among different ethnic groups. One hypothesis is that various causative 

factors can evoke distinct molecular mechanisms to independently initiate malignant 

transformation, which results in vast genomic heterogeneity among patients. Such unique 

risk factor patterns of HCC and ICC provide an opportunity to study cancer heterogeneity 

and associated distinct tumor biology. In the current study, we sought to define stable 

molecular subtypes of ICC and HCC.

RESULTS

Tumor molecular subtypes defined by transcriptome and consensus clustering

To improve our understanding of disease susceptibility and progression as well as patient 

outcomes, we established the Thailand Initiative in Genomics and Expression Research for 

Liver Cancer (TIGER-LC) consortium to create a comprehensive biorepository with 

biospecimens linked to etiologies and clinical features from 3,000 patients with liver cancer, 

and 3,000 high risk and healthy individuals who reside in Thailand. A systematic integration 

of transcriptomic, genomic, somatic copy number alteration (SCNA), and metabolomic 

profiles of biospecimens provides a comprehensive approach to better classify molecular 

subtypes and related drivers in cancer. In this study, we utilized this experimental strategy to 

define molecular subtypes of the first sequential 199 enrolled Thai patients. Common 

molecular subtypes were further validated in 847 liver cancer patients from Asia, Europe 

and North America. The experimental strategy is outlined in Figure S1A – B.

Genomic analyses of ICC and HCC by whole genome or exome sequencing has shown a 

complex mutational landscape with vast inter-tumor heterogeneity (Guichard et al., 2012; 

Nakamura et al., 2015; Totoki et al., 2014). In contrast, transcriptome profiling of ICC and 

HCC have revealed stable molecular subtypes linked to tumor biology and patient outcomes 

(Hoshida et al., 2009; Lee et al., 2004; Roessler et al., 2015; Ye et al., 2003). To define 

molecular patterns in Thai ICC and HCC patients, Affymetrix Human Transcriptome Array 
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2.0 was performed on paired tumor and non-tumor specimens derived from 199 patients. 

The clinical features of these patients are summarized in Table S1. Among them, 153 tumor 

and 151 non-tumor samples passed the quality control tests and were used for transcriptome 

analyses. We first performed unsupervised hierarchical clustering and principle component 

analyses of all primary liver tumors to determine transcriptomic patterns using genes based 

on variance among tumor specimens (Figure1A–B). ICC and HCC are considered as two 

distinct clinical/histologic tumor types and consistently, we found that these primary liver 

tumors have some distinct transcriptomic patterns, however several specimens showed an 

overlapping pattern, indicating that some ICC and HCC share similar molecular features 

(Figure 1A – B). To compare these molecular features, we first identified subtypes in ICC or 

HCC utilizing a consensus clustering (cCluster) method, which was proven to be effective in 

defining stable tumor subtypes as previously described (Monti et al., 2005). cCluster of 

tumor samples revealed 3 major subtypes of HCC and 4 major subtypes of ICC based on 

consensus distributions and the corresponding consensus matrices (Figure S1C–D). The 

relationship among the HCC or ICC subtypes defined by cCluster can be visualized through 

unsupervised hierarchical clustering following a ranking method of the transcriptome used 

by TCGA (The Cancer Genome Atlas Research, 2011) (Figure 1C – D). This analysis 

revealed unique subtypes within HCC or ICC cases with distinct gene expression patterns 

that were independent of known diagnostic factors, cirrhosis, staging or etiology (Figure 1C 

– 1D).

Several recent studies have described transcriptomic similarity between ICC and HCC 

(Oishi et al., 2012; Woo et al., 2010), which is consistent with the overlapping patterns 

observed in the Thai specimens of this study (Figure 1A – B). In order to compare the 

subtypes between ICC and HCC, we used an unsupervised Subclass Mapping method 

(SubMap) (Hoshida et al., 2007). The SubMap method performs a pairwise comparison of 

the molecular features between each of the predetermined ICC and HCC subtypes, identified 

in Figure 1C–D, outputting a statistical likelihood that two subclasses share the same or 

similar underlying transcriptomic patterns, represented by a Bonferroni adjusted p value 

<0.05. Accordingly, this analysis revealed that the molecular features of the ICC-C1 and 

HCC-C1 subtypes are significantly similar (p=0.01), as are the ICC-C2 and HCC-C2/C3 

subtypes (p=0.01) (Figure 2A). However, this relationship was not observed in non-tumor 

tissues, suggesting that subtype-related genes are tumor-specific (Figure S1E). Moreover, an 

unsupervised hierarchical clustering of the common subtypes found in ICC and HCC, 

namely C1 and C2, reveal a striking similarity in the molecular patterns of each subtype 

among primary liver tumors, independent of known diagnostic factors, cirrhosis, staging or 

etiology (Figure 2B). Gene Set Enrichment Analysis (GSEA) of subtype-specific gene 

signatures revealed that both ICC-C1 and HCC-C1 subtypes were enriched for mitotic 

checkpoint signaling pathways, suggesting that this subtype contains high chromosomal 

instability (Figure 2C). In contrast, ICC-C2 and HCC-C2 subtypes were enriched for cell 

immunity-related pathways, suggesting that inflammatory responses are linked to the C2 

subtype (Figure 2C, Table S2). Interestingly, cases defined as HCC-C1 had poor survival 

while those in HCC-C2 had better survival, with a similar trend observed for ICC-C1 or 

ICC-C2 patients (Figure 2D). These results indicate that despite the distinct histological 

Chaisaingmongkol et al. Page 4

Cancer Cell. Author manuscript; available in PMC 2018 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differences between ICC and HCC, common subtypes are evident between these primary 

liver cancers with similar transcriptome patterns, tumor biology and outcome.

Several gene signatures have been linked to ICC/HCC prognostic subtypes, cancer stem cell 

features and tumor metastasis (Andersen et al., 2012; Hoshida et al., 2009; Lee et al., 2004; 

Sia et al., 2013; Yamashita et al., 2008; Ye et al., 2003). We thus examined the relationship 

between the Thai HCC subtypes and known signatures using a nearest template prediction 

algorithm (Hoshida, 2010). We found that the HCC-C1 and ICC-C1 subtypes are 

significantly enriched for S1–2-related genes (p<0.05) (Hoshida study) and stem cell genes 

(Lee study), whereas ICC-C2 and HCC-C2 are significantly enriched for cases that are 

negative for these signatures (Figure S1F–G, Table S3). HCC-C1 is also significantly 

enriched in EpCAM genes (Yamashita study). Likewise, CCA-like signatures are also 

enriched in the above subtypes while C3/4 subtypes contain mixed cases. In contrast, 

metastasis signature, the class 2 signature (Andersen study) and the proliferation signature 

(Sia study) did not separate common subtypes well.

Race/ethnicity-related common tumor subtypes

To further determine whether the common molecular subtypes of ICC and HCC observed in 

the Thai samples are universal, we examined several independent cohorts with available 

transcriptome data from patients who resided in Asia, Europe and North America. These 

include 247 HCC patients from China, 314 HCC patients from the U.S. (TCGA data), 104 

ICC patients from Europe and 182 ICC patients from Japan (Table S4). SubMap was used to 

determine similarities among various subtypes identified by the transcriptome. We found 

that the C2 molecular subtype was observed in Chinese HCC patients (Bonferroni p=0.08; 

unadjusted p=0.003), Asian American (AsA, n=153) HCC patients (Bonferroni p=0.13; 

unadjusted p=0.005), Japanese ICC patients (Bonferroni p<0.05), and Caucasian ICC 

patients (Bonferroni p=0.01), but not in European American (EA, n=161) HCC patients 

(Figure 3A – E). In contrast, we found a molecularly similar C1 subtype in all ICC and HCC 

patients regardless of their race/ethnicity and histologic types. Interestingly, the C2 subtype 

of Thai ICC, Thai HCC, Chinese HCC, Japanese ICC had a better prognosis than Caucasian 

ICC, whereas the C1 subtype from all race/ethnicity had a poor prognosis. To further 

examine the relation between the potential overlapping molecular/prognostic subtypes of 

HCC and ICC, we compared the C1 and C2 subtypes of HCC or ICC among several Asian 

cohorts by unsupervised hierarchical clustering. This analysis reveals two clusters, whereby 

the C1 subtypes of Asian ICC and HCC cluster together and are distinct from the C2 

subtypes of Asian ICC and HCC which also cluster together (Figure S2). There is a 

statistically significant enrichment in C1- and C2 in each cluster (fisher’s exact test two-

sided p<2.2 × 10e-16). In contrast, a statistical enrichment of ICC and HCC in the clusters 

was not found (p=0.086). These data thus confirm and display the distinct transcriptome 

profile of C1 and C2 subtypes and their common presence among ICC and HCC. Since the 

C1 molecular subtype can be found in both Asians and Caucasians (Figure 3A – E), we 

performed Kaplan-Meier survival analyses to compare the C1 subtypes between Asian and 

Caucasian individuals among various cohorts (Figure 3F) Interestingly, these data show that 

although Caucasian ICC and HCC patients among the C1 subtype have similar tumor 

transcriptome patterns with Asian patients (Figure 3A – E), they have a different outcome 
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than Asian HCC and ICC C1 patients. This pattern was observed at either a 2-year time 

point (Figure 3F) or a 5-year time point (data not shown). In forest plots based on the 

survival data, using TCGA Caucasian HCC as the reference (since this group has the best 

outcome), a statistically increased hazard ratio (p<0.05) is observed when comparing TCGA 

Caucasian HCC C1 patients to any of the Asian ICC or HCC C1 patients, however a similar 

hazard ratio was found when comparing the TCGA Caucasian HCC C1 patients to the 

Caucasian ICC C1 patients (Figure 3F). To avoid platform bias when comparing different 

cohorts using different molecular profiling techniques, we performed unsupervised 

hierarchical clustering using only the TCGA cohort (Figure S2B) which shows that the C1 

subtype (red) clusters together among Asian or Caucasian individuals (yellow or white bars), 

however the C2 subtype (blue bars) is only present in Asian TCGA patients. In addition, we 

performed SubMap analysis on the TCGA cohort between Asians and Caucasians which 

shows the presence and similarity among the C1 or C3 subtypes of HCC patients (Figure 

S2C). However, the C2 subtype is not observed in Caucasian individuals in TCGA. It seems 

that C1 and C3 subtypes are observed in ICC and HCC patients of Asian or European 

descent, however the association of the C1 subtype with poor outcome is more readily 

observed in Asian individuals. Taken together, these results suggest that common molecular 

subtypes of ICC and HCC are also related to race/ethnicity.

Subtype-related cancer drivers

Next, to define subtype-related driver genes, we performed targeted exome sequencing of 

Thai ICC and HCC. The exons and surrounding noncoding genomic regions of 562 protein-

coding genes most frequently recurrent and mutated across diverse solid tumor types defined 

by the COSMIC database (Table S5) were captured in 197 pairs of tumor and paired non-

tumor tissues and sequenced at an average of 125x coverage. We found that mutation types 

are similar between ICC and HCC (Figure 4A). The average mutation rate was 4.4 mutations 

per megabase for ICC and 3.7 mutations per megabase for HCC with no significant 

difference between the two tumor types (Figure 4B). Both HCC and ICC included a subset 

of 12 hypermutated samples [greater than 10 somatic single nucleotide variants (snvs)/Mb], 

which may be candidates for immune checkpoint inhibitor trials. These hypermutated 

tumors included several cases with mutations in mismatch repair genes as well as one case 

with a somatic mutation signature consistent with aristolochic acid exposure (Figure 4B, 

Table S6). We noticed that ICC has more C>T transition mutations, while HCC has more 

A>C, A>T and C>A transversion mutations (Figure 4C–F, Table S6).

Among 22 candidate driver genes in ICC and 32 candidate driver genes in HCC, eight genes 

(TP53, ARID1A, ARID2, CSMD3, RYR2, NF1, PRKDC, PSIP1) were common in both 

ICC and HCC (Figure 5). A majority of these genes have been found by other genome 

sequencing studies of liver cancer with some variations of their frequencies (Guichard et al., 

2012; Nakamura et al., 2015; Ong et al., 2012; Totoki et al., 2014). A comparison of the 

candidate drivers in ICC or HCC Thai patients show consistent mutation frequencies when 

compared to Japanese ICC, COSMIC ICC or COSMIC HCC patients (Table S7). Consistent 

with other published studies, we observed a complex mutational landscape of ICC and HCC 

with a vast inter-tumor heterogeneity without evident dominant driver genes as most of these 

genes are mutated in a low frequency in these tumor types (Figure 5). It should also be noted 
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that genes such as RYR2, CSMD3 and SYNE1 are no longer considered cancer genes even 

their mutation recurrence is still relatively high.

Since gene mutation data were available for 182 Japanese ICC tumors, we determined 

whether any relationships existed between the common subtypes identified in this study and 

the top 32 mutated genes described by Nakamura et al (Nakamura et al., 2015). We found 

that while mutation data do not clearly discriminate common subtypes, and mutation 

frequencies range from 1–43% for each subtype, mutations in TP53, KRAS, MYC, and 

GNAS (>10% mutations) showed enrichment in the C1 subtype with poor prognosis, and 

mutations in BAP1 and IDH1 were more frequent in UM (unmatched), a subtype that did 

not match the C1/C2 subtypes but was associated with a good prognosis (Figure S3A). 

Noticeably, 15% of the UM subtype, but none of C1 and C2 subtypes, carries IDH1 
mutations, suggesting that this unique subtype of ICC has a distinct gene mutation pattern 

and better prognosis. Interestingly, we found that a statistically significant number of genes 

(3 of 51 driver genes, i.e., NRAS, PRKCI and ECT2), based on SCNA and the transcriptome 

(Figure 6) overlap with these 32 mutated genes (p=0.0004; hypergeometric test). It is noted 

that mutation frequencies vary among different cohorts. It is possible that these 

heterogeneities could be contributed by differences in populations or to clinical tumor 

heterogeneity in ICC and HCC with differences in underlying etiological factors. However, a 

clear relationship between major etiological factors and mutation profiles was not observed. 

As evident by our further analysis of IDH1, IDH2, BAP1 mutations among various cohorts, 

which were discovered by recent exome sequencing projects to have a relative high mutation 

frequency in ICC (Jiao et al., 2013), we found that mutations of these 3 genes vary widely 

among different cohorts (Figure S3B). It fact, the data indicate that BAP1 mutations occur 

with higher frequency, and IDH1 and IDH2 mutations occur solely, in those of European 

descent versus Asian or African descent ICC patients (Figure S3C). Consistently, we only 

found one case of Thai ICC with IDH1 mutations (Table S6). In contrast, among the Thai 

cohort, the C1 common subtypes contain more p53 mutations than C2 subtypes (Figure 5). 

We also found that p53 R249S mutation, an aflatoxin signature mutation, is only associated 

with the HCC-C3 subtype (data not shown), suggesting a unique environmental exposure 

associated with this subtype. Thus, targeted exome sequencing based on the Oncovar design 

can identify driver mutations with relatively high frequencies, similar to whole exome 

sequencing.

We also determined somatic copy number alterations (SCNA) among Thai tumor specimens 

and paired non-tumor tissues as controls using Affymetrix Genome-Wide Human SNP 

Array 6.0. Consistent with previously published studies (Roessler et al., 2012), a typical 

SCNA profile with recurrent gains and losses on 1q, 6p, 8q and 4q, 8p, 13q, 16, 17p, 

respectively, was evident in HCC specimens (Figure S3D). A similar pattern of SCNA was 

found in TCGA HCC patients of Asian origin as indicated by common gain of 1q, 6p and 8q 

or loss of heterozygosity at 4q, 8p, 13q, 16 and 17p, but not in TCGA HCC patients of 

Caucasian origin (Figure S3E–F, Table S8). We found that SCNA profiles between ICC and 

HCC differ considerably (Figure S3D and S3G, Table S8). However, when we analyzed 

SCNA profiles based on C1 and C2 subtypes, there was a significantly higher degree of 

recurrent gains and losses found in both ICC-C1 and HCC-C1, when compared to ICC-C2 

and HCC-C2 (Figure 6A – B). This result is consistent with the transcriptome and GSEA 
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analyses and suggests that ICC-C1 and HCC-C1 contain mitotic checkpoint defects, which 

may result in higher degrees of aneuploidy.

To further determine potential subtype-related driver genes based on the notion that a driver 

gene should have high concordant alteration among SCNA and gene expression (Roessler et 

al., 2012; Woo et al., 2009), we first performed Pearson’s correlation between SCNA and the 

transcriptome. This analysis revealed that there is a significant positive correlation among a 

subset of genes (Figure S3H), i.e., 239 genes for ICC-C1 and 89 genes for HCC-C1 tumor 

specimens. Among them, 51 genes overlapped between ICC-C1 and HCC-C1, suggesting 

the existence of common subtype-specific drivers in ICC and HCC (Figure 6C, Table S9). 

Consistently, more copy number gain and elevated expression were associated with the C1 

subtype than the C2 subtype (Figure 6D). Consistent with our findings above, a network 

analysis of these 51 genes revealed enrichment of mitotic checkpoint signaling pathways 

linked to PLK1 signaling (Figure 6E, Table S9). In addition, ECT2 was the top ranking 

differentially expressed gene between the C1 and C2 subtypes (Table S9). Similar results 

were observed using the TCGA HCC dataset (Figure S3I). Consistent with Thai ICC and 

HCC, we found that an association of 51 common subtype-related genes and race/ethnicity-

related prognosis were also observed in HCC patients from the U.S. (Figure S3J). 

Noticeably, 6% of the Japanese ICC-C1 subtype also showed mutations in ECT2, consistent 

with our finding that ECT2 is a functional driver for the common C1 subtype (Figure 6).

The data above suggested that ECT2 and PLK1 could be clinically relevant functional 

biomarkers useful to detect ICC and HCC subtypes since both have been previously linked 

to tumor progression (Cook et al., 2014; Strebhardt, 2010; Vigil et al., 2010). We thus 

evaluated ECT2 and PLK1 by immunohistochemistry (IHC) on tissue microarrays (TMAs) 

of ICC and HCC that were constructed from 199 Thai patients. We found that PLK1 is 

detected in the cytoplasm, but is not expressed in the normal hepatocytes (Figure 6F, Figure 

S3K, and data not shown). Meanwhile, ECT2 is expressed in the nucleus, but is absent in 

normal hepatocytes (Figure 6F, Figure S3K, and data not shown). The expression levels of 

these proteins detected by IHC correlated with mRNA data (Figure S3L). Further analysis 

demonstrated correlation of PLK1 and ECT2 expression at the RNA level and protein 

expression level (Figure S3M). PLK1 and ECT2 were subject to survival analysis 

individually (Figure S3N), showing that patients with a high TMA score of PLK1 or ECT2 

had a poor outcome trend. Given the substantial correlation in expression between PLK1 and 

ECT2 and the fact that PLK1 has been demonstrated to phosphorylate ECT2 in vitro (Niiya 

et al., 2006), we evaluated the combination of the two biomarkers to predict outcome. Based 

on prior examples of ratiometric combination of related biomarkers (Chung et al., 2009; 

Kitano et al., 2014), we generated a PLK1/ECT2 ratio from the TMA scores, and performed 

survival analysis (Figure 6G), which demonstrated that the PLK1/ECT2 ratio was robust to 

discriminate outcomes. To determine whether the combination of PLK1 and ECT2 

expression was a universal predictor of outcome, we assessed high/low mRNA combination 

groups based on the median expression of the two genes in various cohorts. We found that a 

combined high PLK1 and ECT2 expression is associated with poor survival compared to a 

combined low PLK1 and ECT2 expression in HCC (Figure S3O) patients among those who 

are Asian, however an association with prognosis is not observed in Caucasian patients. A 

similar trend is observed in Asian ICC and Caucasian ICC patients (Figure S3P). These data 
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indicate that protein levels of PLK1 and ECT2 may be more indicative of patient outcome 

and suitable for diagnostic purposes rather than mRNA based levels.

Obesity and tumor subtypes

To determine whether any of the etiological/demographic/clinical features are linked to the 

identified tumor subtypes, we compared C1 and C2 subtypes based on available clinical 

variables that include age, gender, tobacco and alcohol consumption, body mass index 

(BMI), and tumor characteristics. Only age, BMI status and tumor size appeared to be 

different between the C1 and C2 subtypes of Thai ICC and HCC (Table S1). It should be 

noted that alcohol consumption, HBV and HCV status, cirrhosis by Child-Pugh score, levels 

of alkaline phosphatase (ALP), CA19-9, alpha-fetoprotein (AFP), and tumor staging differed 

significantly between ICC and HCC (Table S1). It is interesting that these etiological factors 

are not associated with common molecular subtypes, but they are linked to histological 

subtypes.

Since higher BMI was found among Thai C2 patients when compared to C1, we further 

determined BMI profiles in Thai, AsA and EA patients with available BMI data. We found 

that EA patients tend to have higher BMI than Asian patients regardless of whether they live 

in Asia or in the U.S. (Figure S4A). C2 subtypes tend to have a higher BMI than C1 

subtypes and the difference is statistically significant (Figure S4B). BMI is measure of 

obesity, a disease associated with alterations in metabolism. We thus determined whether 

metabolic alterations were associated with the prognostic subtypes we identified in HCC and 

ICC, by performing untargeted metabolomic profiling among 188 ICC and HCC tumor 

tissue specimens from Thai patients (Table S10). Since integrating metabolite and gene 

expression profiles are a powerful method of reducing false positivity and increasing the 

chances of defining functional metabolites (Budhu et al., 2013), we performed a Pearson 

correlation analysis between metabolite and gene expression profiles (Figure S4C–D). A 

total of 77 metabolites for ICC and 81 metabolites for HCC from a total of 178 most 

variable metabolites showed a high correlation with gene expression (R> − 0.5 or 0.5; p <0 .

05; >20% of the genes). We found a statistically significant number of overlapping 

metabolites (n=46) between ICC and HCC (hypergeometric p=0.0007). Moreover, 

metabolites that showed a high concordance with gene expression discriminated the C1 and 

C2 subtypes (Figure 7A, Figure S4E). The top networks of the most significant metabolites 

from ICC and HCC were strikingly similar (Figure 7B, Figure S4F, Table S10). We found 

that bile acid-related metabolites, such as taurochenodeoxycholate and 

tauroursodeoxychoate (TUDCA), are significantly more abundant in both ICC-C2 and HCC-

C2 than in C1 subtypes (Figure 7C, Figure S4G).

The C2 subtype is associated with an increased BMI, which is known to be linked to 

metabolic disease and cellular inflammation (Calle et al., 2003; Park et al., 2010). In 

addition, the C2 subtype-related bile acid metabolites are known to be linked to 

inflammation and immunity (Yoshimoto et al., 2013). In fact, the gene expression profile of 

the C2 subtype was also linked to immune and inflammation pathways (Figure 2C). We thus 

examined infiltrating immune cells in Thai ICC and HCC using CIBERSORT (Newman et 

al., 2015). We found that the activity of leukocyte infiltrates is much higher in the C2 than in 
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the C1 subtype (Figure 7D, Figure S4H). Noticeably, elevated CD4+ memory T cells, along 

with γδ T cells, but reduced Treg cells, are associated with the C2 subtype (Figure 7E–F, 

Figure S4I–J). Taken together, the results indicate that while the C1 subtype contains mitotic 

checkpoint defects with altered PLK1 and ECT2, the C2 subtype has elevated BMI, immune 

cell abnormality and abnormal bile acid metabolism.

DISCUSSION

A major hallmark of liver cancer is its association with various types of etiological factors 

and its high heterogeneity in clinical presentation and underlying tumor biology. 

Consequently, most patients with liver cancer are refractory to treatment and have a dismal 

outcome. One of the essential requirements needed to improve their outcome is to provide a 

diagnostic tool kit that is capable of accurately defining homogenous molecular subtypes, 

each displaying unique tumor biology linked to potentially druggable driver genes in order 

to implement rational treatment choices based on molecular subtypes. Accordingly, the 

development of well-annotated biobanks of cancer patients, such as the efforts by TCGA 

and ICGC, are key resources to further develop the goals of precision medicine. Currently, 

TCGA and ICGC include HCC specimens largely derived from North America, Europe and 

Japan. Considering that ICC and HCC are much more prevalent in Asian populations, we 

established a TIGER-LC consortium to generate a biorepository and conduct a case-control 

study in Thailand where liver cancer, especially ICC, is endemic.

In the current study, we found that both ICC and HCC, regardless of their difference in 

histology and associated etiologies, consist of several common molecular subtypes shared 

mainly among Asian patients. Interestingly, certain common ICC and HCC subtypes share 

distinct gene expression matrices and have similar aggressiveness, suggesting the presence 

of common molecular types beyond the traditionally viewed histological tumor subtypes. 

While exomic sequencing reveals 8 common driver genes among ICC and HCC in the midst 

of a complex mutational landscape with considerable inter-tumor heterogeneity, systematic 

integration of the cancer transcriptome, SCNA and metabolome revealed additional key 

oncogenic drivers linked to an aggressive molecular subtype. Specifically, the C1 subtype is 

enriched for p53 mutations and contains mitotic checkpoint defects, while the C2 subtype is 

linked to inflammation, obesity and bile acid biogenesis. These results suggest that treatment 

stratification should not be based on histological types, but rather on molecular types with a 

unified perspective of the disease (Dotto and Rustgi, 2016).

Hepatocarcinogenesis is a complex process resulting from an accumulation of genetic and 

epigenetic alterations of various cancer drivers over many decades. Tumor evolution is 

expected to vary significantly between different tumor types due to the fact that each tumor 

cell needs to adapt to the microenvironment’s stress induced by different etiological factors. 

Consequently, liver cancer is especially prone to genetic heterogeneity. While whole 

genome/exome sequencing approaches are powerful in identifying potential cancer drivers, 

candidate ICC or HCC-related driver mutations are extremely heterogeneous, as each tumor 

carries a large number of low frequency mutated genes in various combinations (Guichard et 

al., 2012; Nakamura et al., 2015; Totoki et al., 2014). Furthermore, most of these genetic 

abnormalities characterized by whole exome sequencing have been considered as either 
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passenger or histological mutations that do not have any functional impact on the tumors 

being diagnosed (Helleday et al., 2014). For those genes with a relatively higher mutation 

frequency that have been characterized as candidate drivers, vast inter-tumor heterogeneity 

among different tumor lesions that carry varying combinations of these candidate drivers is 

clearly evident (Guichard et al., 2012; Totoki et al., 2014). The results of our exomic 

sequencing analysis are consistent with this observation. It is conceivable that a combination 

of different cancer drivers may emerge as new convergent adaptive pathways are rewired for 

cancer cell survival that are unique to different subtypes. It should be noted that cancer 

drivers can not only be acquired by somatic mutations, but also via epigenetic mechanisms, 

such as DNA methylation of oncogenes or tumor suppressor genes. This may explain why 

finding stable tumor subtypes with unique tumor biology by whole exome sequencing is 

very challenging as it only captures a fraction of tumor characteristics. In contrast, 

transcriptomic profiling has been successful in defining stable HCC subtypes that may 

reflect their unique tumor biology (Hoshida et al., 2009; Lee et al., 2006; Nault et al., 2013; 

Roessler et al., 2010; Yamashita et al., 2008), although defining key driver genes among 

different tumor subtypes by transcriptome-based approaches has been challenging. We 

suggest that an integrated omics approach, correlating genomics, epigenomics, 

transcriptomics, proteomics, and metabolomics data, is key to addressing tumor 

heterogeneity and identifying cancer drivers.

Our study revealed that the C1 subtype is linked to mitotic checkpoint defects and p53 

mutations, and that PLK1 and ECT2 are two key, clinically relevant genes for C1. A link 

between p53 and the mitotic checkpoint is well documented (Cross et al., 1995). Loss of p53 

function by mutations found in the C1 subtype may explain the increased aneuploidy 

observed in this subtype. In addition, we found that both PLK1 and ECT2 expressions are 

highly expressed in the C1 subtype and are robust in defining tumor subtypes using IHC. 

This is clinically meaningful since IHC is a preferable method for pathological diagnosis. 

The ECT2 gene is also preferentially amplified or mutated in the C1 subtype, consistent with 

the hypothesis that it is a driver gene for this subtype. Consistently, both PLK1 and ECT2 

have been functionally linked to cancer. PLK1 is a mitotic serine/threonine protein kinase 

and is required to initiate mitosis and regulate spindle assembly. Overreactive PLK1 

signaling has been found in human tumors, including HCC, and has been proposed to serve 

as a potential target for the treatment of cancer because of its crucial functional node in the 

oncogenic network (Strebhardt, 2010). Many PLK1 inhibitors are currently being tested in 

solid tumors (Yim, 2013). ECT2 belongs to the Ras superfamily GEFs and GAPs (Vigil et 

al., 2010) and is a classical oncogene originally identified in 1991 based on its ability to 

transform NIH 3T3 cells (Cook et al., 2014). Its role as a tractable target for cancer therapy, 

including HCC, has been suggested since it is responsible for promoting early recurrence of 

HCC (Chen et al., 2015; Vigil et al., 2010). Our results suggest that PLK1 and ECT2 

expression could serve as biomarkers for patient stratification and molecular targets for the 

C1 subtype of Asian ICC and HCC.

Metabolic liver diseases and obesity have been linked to liver inflammation and cancer 

(Calle et al., 2003; Cohen et al., 2011; Park et al., 2010; Welzel et al., 2011). However, the 

molecular mechanisms underlying these associations are unclear. We found that a common 

clinical feature linked to the C2 subtype is an increased BMI, suggesting a possible 
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association with liver-related metabolic diseases. As BMI is linked to inflammatory 

responses and metabolic disorders, we also examined tumor-associated leukocytes among 

the molecularly defined subtypes. We found that lymphoid cells such as CD4+ memory T 

cells and γδ T cells, but not myeloid cells, are significantly elevated in the C2 subtype. 

These results are consistent with the gene expression data of the C2 subtype, which was 

enriched for cell immunity-related pathways, reaffirming the idea that an inflammatory 

response is linked to the C2 subtype. It is interesting that several bile acid metabolites such 

as TUDCA, taurocholic acid and glycochenodeoxycholate are also consistently much more 

abundant in the C2 subtype than the C1 subtype in both ICC and HCC. Bile acids have 

recently emerged as versatile signaling molecules to regulate cholesterol metabolism, energy 

and glucose homeostasis, which forms the basis for developing drug targets to treat common 

metabolic and hepatic diseases (Thomas et al., 2008). It is conceivable that some of these 

drugs may be applicable to treat the C2 subtype of liver cancer. Our results are also 

consistent with recent studies indicating that the obesity-induced gut microbial metabolite 

deoxycholic acid promotes liver carcinogenesis through the senescence secretome and that 

diet can alter the human gut microbiome, facilitating diet-related diseases, such as obesity 

(David et al., 2014; Yoshimoto et al., 2013). Moreover, dietary-fat-induced taurocholic acid 

promotes pathobiont expansion and colitis in IL10-deficient mice, revealing a plausible 

mechanistic basis for diets with certain saturated fats for induction of immune-mediated 

diseases in genetically susceptible hosts (Devkota et al., 2012).

While our results indicate that the common C1-C2 subtypes are mainly associated with 

Asian patients, the reason for this race/ethnicity-related association is unclear. It is plausible 

that Western-type diets may induce dysbiosis differently between Asians and Caucasians, 

and that race/ethnicity-related gut microbiome differences may cooperate with bile acid 

metabolism to induce distinct carcinogenesis processes observed in the Asian-related 

common C2 subtype. Increased infiltrating T cells in the C2 subtype also suggest a plausible 

scenario whereby these tumors may be sensitive to immune checkpoint inhibitors. In 

summary, our integrated omics approach has defined common molecular subtypes of ICC 

and HCC across several Asian populations and identified potential driver genes and 

metabolic processes linked to the specific subtypes. Further efforts of the TIGER-LC 

Consortium are underway to more fully understand ICC and HCC biology, and to improve 

outcomes for liver cancer patients. Thus, TIGER-LC serves as a rich resource from which 

numerous investigations can follow, spanning a breadth of disciplines, including genomics, 

epidemiology, functional and clinical studies, which, when amalgamated, may significantly 

enhance the scope of our liver cancer knowledge-base and allow us to more successfully 

manage patient care with an outlook towards precision medicine.

STAR METHODS

Contact For Reagent And Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Xin Wei Wang (xw3u@nih.gov).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohorts and Clinical Specimens—A set of 398 surgical paired tumors and nontumor 

specimens derived from 199 sequential patients of the TIGER-LC cohort (130 ICC patients 

and 69 HCC patients) were used in this study. Tumor diagnosis was independently 

confirmed by pathological assessment by resident pathologists at each participating center in 

Thailand as well as a surgical pathologist in the U.S. Mixed HCC-ICC cases were excluded 

from this study. Clinical, demographic, socioeconomic and morbidity data were abstracted 

from comprehensive questionnaires and medical chart records. A list of clinical variables 

assessed in this study is provided in Table S1. The characteristics of 153 Asian HCC patients 

and 161 Caucasian HCC patients from TCGA were also used in this study (TCGA Research 

Network: http://cancergenome.nih.gov/). The characteristics of 104 Caucasian ICC patients 

and 182 Japanese patients from independent cohorts were described recently (Andersen et 

al., 2012; Nakamura et al., 2015). The HCC cohort of 247 Chinese patients from LCI was 

previously described (Roessler et al., 2010). Informed consent was obtained from all patients 

included in this study and approved by the Institutional Review Boards of the respective 

institutions (NCI protocol number 13CN089; CRI protocol number 18/2555; Chulabhorn 

Hospital protocol number 11/2553; Thai NCI protocol number EC163/2010; Chiang Mai 

University protocol number TIGER-LC; Khon Kaen University protocol number 

HE541099). A study design diagram representing the use of cohorts in this study is shown in 

Figure S1.

METHOD DETAILS

RNA Isolation and Transcriptomics—Total RNA was extracted from frozen tissue 

using TRIzol (Invitrogen) according to the manufacturer’s protocol. Only RNA samples with 

good RNA quality as confirmed with the Agilent 2100 Bioanalyzer (Agilent Technologies) 

were included for array studies. The Affymetrix Human Transcriptome Array 2.0 was used 

to measure transcripts among paired tumor and nontumor tissue specimens. Raw gene 

expression data were normalized using the Robust Multi-array Average (RMA) method 

(Irizarry et al., 2003) and sketch quantile normalization method. For genes with more than 

one probe set, the mean gene expression was calculated. The microarray platform and data 

were submitted to the Gene Expression Omnibus (GEO) public database at NCBI following 

MIAME guidelines (GEO Series GSE76297). Gene expression data of the three independent 

cohorts are accessible through GEO Series (GSE14520 and GSE26566), TCGA and 

European Genome-phenome Archive (EGA) database (EGA00001000950). All expression 

data were log2 transformed and normalized using R statistical packages (https://cran.r-

project.org/doc/FAQ/R-FAQ.html) based on mixed model ANOVA to overcome differences 

between the platforms. Unsupervised hierarchical clustering of the most variable genes (+/

− 2SD) among tumor specimens of ICC or HCC was performed. Consensus clustering 

(cCluster; hierarchical clustering; Pearson distance; complete linkage; 1000 resampling 

iteration) was used to define subtypes among HCC or ICC (Monti et al., 2005; Wilkerson 

and Hayes, 2010). Heatmaps were generated using the Complex Heatmap package in R (Gu 

et al., 2016) to determine the relationship among samples or cCluster-defined subgroups. In 

subtype analyses, genes were selected based on ANOVA between subtypes of HCC or ICC 

(Bonferroni corrected p=0.05) An unsupervised subclass mapping method (SubMap) was 
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used to identify common subgroups between independent cohorts using the default setting 

found in the SubMap module (http://genepattern.broadinstitute.org/) (Hoshida et al., 2007). 

Significant similarity between clusters found by the SubMap method are defined as those 

with p<0.05 and denoted by red colored boxes, while borderline significance (p approaching 

0.05) is denoted by an orange box and lack of significance (statistical difference, p~1.0) is 

denoted by a blue box.

DNA Isolation and Somatic Copy Number Alterations (SCNA)—Total DNA was 

extracted from frozen tissue using a Phenol/Chloroform extraction protocol. Samples with 

sufficient amount of double-stranded DNA as confirmed by Quant-iT PicoGreen dsDNA 

Assay Kit (Thermo Fisher Scientific) were included for array studies. The Affymetrix 

Genome-Wide Human SNP Array 6.0 was used to determined somatic copy number 

alterations (SCNA) among paired tumor and nontumor tissue specimens. The raw SCNA 

data is accessible through GEO Series GSE76213. SCNA of ICC and HCC was analyzed 

using Partek Genomics Suite 7.5 using the paired non-tumor tissue as the reference for each 

patient. The segmented regions in ICC and HCC were found using the genomic 

segmentation algorithm in Partek. To identify genes that are concordantly regulated with 

SCNA, the Pearson correlation value was calculated between the copy number segmented 

region and the transcriptome data from either ICC or HCC tissues. To define the C1 and C2 

subtype-specific concordant genes, the genes located in segmented regions with a positive 

correlation value and p values ≤0.005 were considered. To define the copy number 

concordant genes for the C1 and C2 subtype in ICC and HCC, the p value from a Student’s 

t-test and fold change of the log2 transformed expression value among the most variable 

genes used for the class prediction between C1 and C2 ICC or HCC subtypes were used. To 

identify C1 subtype-specific copy number concordant genes in ICC and HCC, we selected 

the genes with a Student’s t-test p value ≤0.005 when C1 and C2 subtypes were compared.

Exome Sequencing and Data Processing—Simultaneous fragmentation and adaptor 

ligation was performed on input gDNA (50 ng) by tagmentation using the Nextera DNA 

Library Preparation kit, according to manufacturer’s protocol (Illumina). Products with a 

mean size of 350 bp +/− 20% were purified using the Agencourt AmpureXP Purification 

System (Beckman Coulter). Amplification and dual indexing of purified samples was 

performed using Illumina PCR primers InPE1.0 and InPE2.0 and primer indices (8bp). 

Hybridization capture of pooled, indexed libraries was performed according to the 

manufacturer’s protocol using NCI OncoVar V4, an Agilent SureSelect Custom DNA kit 

(Agilent Technologies) targeting 2.93 Mb of sequence in 562 genes found to be mutated in 

diverse solid tumors (Tablele S6). In addition, xGen® Blocking Oligos (Integrated DNA 

Technologies Inc., Coralville, IA) specific to Nextera library adaptor sequences were used 

during hybridization according to manufacturer’s recommendations. The libraries were 

sequenced on an Illumina NextSeq 500 or HiSeq 2500 instrument by paired end 2×75bp to 

an average target region depth of 125x. Alignments to the hg19 human reference genome 

assembly were performed with BWA mem 0.7.10-r789 (Li and Durbin, 2009), indel 

realignment by GATK IndelRealigner 3.4-0-g7e26428 (McKenna et al., 2010) and 

duplicates were marked with picard MarkDuplicates 1.129 (Li et al., 2009). Somatic single 
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nucleotide variants and small insertions and deletions were called with strelka 2.0.17 

(Saunders et al., 2012).

Metabolomics—Metabolon’s Discover HD4 Platform was employed to measure small 

biochemical species among tumor tissue specimens. Both liquid chromatography in positive 

and negative modes (LC+/LC−) and gas chromatography/mass spectrometry (GC/MS) were 

employed. A total of 718 metabolites were measured. The missing values were imputed 

using the minimum value of each metabolite. The 178 most variable metabolites common in 

both HCC and ICC cohorts were selected (Filter: 1.5-fold change from metabolite’s median 

value, Log intensity variation p value>0.01). Pearson correlation values between the selected 

metabolites and the most variable genes were calculated for each cohort separately. Only 

significantly correlated metabolites and genes within the same samples (p<0 .05) were 

included in further analysis. Furthermore, metabolites that were significantly associated with 

at least 20% of the genes were selected. Metabolomics data is available in Table S10.

Immunohistochemistry—Tissue microarrays (TMAs) were constructed with 1.0 mm 

cores from formalin fixed, paraffin embedded tissue that had been reviewed by SH 

(Kononen et al., 1998) as separate TMAs for cholangiocarcinoma and hepatocellular 

carcinoma. Matched TMAs of normal tissue from the patients were constructed as a 

reference. All TMAs contained internal control tissues. Immunohistochemistry was 

performed on 5µm TMA sections. First, slides were deparaffinized in xylene, and rehydrated 

in graded alcohol. Antigen retrieval was performed in a pressure cooker for 20 min with a 

pH6 citrate buffer. Anti-PLK1 (mouse monoclonal, clone CN05–844, Millipore) was applied 

at a 1:1000 dilution in a 2% non-fat milk solution at room temperature for 2 hr. Anti-ECT2 

(mouse monoclonal, “E-1” cat SC-514769, Santa Cruz Biotechnology) was applied at a 

dilution of 1:500 in a 2% non-fat milk solution. Antigen-Antibody complexes were detected 

with Envision+ (Dako) secondary, and DAB. Slides were counterstained with hematoxylin, 

dehydrated, cleared and coverslipped. Positive and negative controls were performed. A 

TMA of matched normal liver was stained concurrent with the tumor TMAs. Interpretation 

of immunohistochemical staining was performed at 200X magnification. Tumors were 

scored for percentage of tumor cells stained (0–4 in quartiles) and intensity of staining (0–4). 

The two values were multiplied (range 0–16). Normal tissue TMAs failed to demonstrate 

staining of tumor markers. ECT2/PLK1 ratios were calculated from raw data, and cut points 

were determined as ECT2/PLK1 ratio ≤1 for the low and >1 for the high group, similar to 

that previously described (Kitano et al., 2014), and plotted as Kaplan-Meier plots. High or 

low mRNA levels of PLK1 and ECT2 were determined using a median score. The Cox-

Mantel log-rank test was used for statistical analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pathway analysis was performed using Gene Set Enrichment Analysis (GSEA) version 16 

and Ingenuity Pathway Analysis (IPA) version 24718999. Kaplan-Meier survival analysis 

was used to compare patient survival using GraphPad Prism 6–7 and the statistical p value 

was generated by the Cox-Mantel log-rank test. All p values are two-sided and the statistical 

significance was defined as p<0.05 unless otherwise noted. The relationship between 

previously reported signatures and the Thai ICC and HCC cohorts was determined using a 
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nearest template prediction algorithm (Hoshida, 2010) implemented in GenePattern 

(Subramanian et al., 2005) based on a prediction confidence false discovery rate (FDR) cut-

off of 0.05. For comparisons among various cohorts and platforms, a z-score was applied to 

normalize each set. An estimation of the relative fractions of immune/inflammatory cell 

subsets from tissue expression profiles of ICC or HCC was conducted using CIBERSORT 

(Newman et al., 2015). The gene expression data were converted by quantile normalization 

of the log2 scaled expression matrix and relative fractions of leukocytes in the C1 and C2 

subtype of ICC and HCC were quantified according to the website (cibersort.stanford.edu/) 

with implemented analyses using the built-in LM22 signature matrix (LM22). Welch’s Two 

Sample t-test was used to compare each of the 22 relative leucocyte fractions between the 

C1 and C2 subtype. Pearson correlation analysis was used to determine the correlation 

between leukocytes and BMI in the C1 and C2 subtypes.

Data And Software Availability

All DNA sequencing data have been deposited in the dbGaP (Accession # 

phs001199.v1.p1). All gene expression and SCNA data used in this study have been 

deposited in the NCBI Gene Expression Omnibus (GEO) under accession codes GSE76297 

and GSE76213. Metabolomics data is provided Table S10. Software used in this study are 

noted in the Method Details section above and the Key Resources Table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• ICC and HCC consist of several stable molecular types

• ICC and HCC share common molecular subtypes and driver genes

• Asian-specific ICC and HCC subtypes are linked to unique metabolic 

processes

• Oncogenic PLK1 and ECT2 are subtype-related biomarkers

Chaisaingmongkol et al. identify common molecular subtypes linked to similar prognosis 

in intrahepatic cholangiocarcinoma and hepatocellular carcinoma, clinically different 

malignancies, among Thai patients. These molecular subtypes are also found in other 

Asian patients, but rarely in Caucasian patients.
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Significance

Primary liver cancers have a complex mutational landscape with vast inter-tumor 

heterogeneity, which poses a major challenge to define actionable drivers. Well-defined 

patient populations with well-annotated molecular characteristics are needed to 

accurately define homogenous molecular subtypes with unique tumor biology linked to 

potentially druggable driver genes. Here, we demonstrate that common molecular 

subtypes with key drivers are shared among Asian ICC and HCC patients through 

systematic integration of the genome, transcriptome, and metabolome. Our results 

indicate that ICC and HCC, while clinically treated as separate entities, share common 

molecular determinants, suggesting that a unified molecular landscape of liver cancer is 

required to improve diagnosis and therapy.
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Figure 1. Identification of ICC and HCC molecular-based tumor subtypes
(A) A heatmap of ICC and HCC samples is shown by unsupervised hierarchical clustering 

of the most variable genes (+/− 2SD; n=587) among tumor specimens. (B) A principal 

components (PC) analysis of ICC and HCC tumor specimens is shown. (C) A heatmap of 

HCC subtypes is shown based on consensus clustering. The x-axis represents HCC subtype 

consensus clusters. HCC samples are represented in columns, grouped by the dendrogram 

into 3 main clusters and genes (n=370) are represented in rows. Z-scored gene expression 

are shown from −4 to 4. Clinical data of the samples are included below the heatmap. (D) A 

heatmap of ICC subtypes is shown as in (C). The x-axis represents ICC subtype consensus 

clusters and genes (n=1115) are represented in rows. See also Figure S1, Table S1.
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Figure 2. Identification of common C1 and C2 molecular subtypes of ICC and HCC
(A) Subclass Mapping of ICC and HCC subtypes is shown. Significant relationships 

between subtypes are represented by Bonferroni adjusted p values. Significant associations 

showing similarity between subtypes are shown in red with p<0.05 while differences 

between subtypes (Bonferroni adjusted p=1) are shown in blue. (B) A heatmap of ICC and 

HCC C1 and C2 samples is shown by unsupervised hierarchical clustering of genes 

(n=1378) differentiating the C1 and C2 groups among tumor specimens. (C) Significant 

pathways, identified by GSEA analysis, of HCC or ICC-C1 or C2 subtypes is shown, 
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represented by log10 p values from 2 to 0 (p value from 0.01 to 1). (D) Kaplan-Meier 

survival analysis of HCC subtypes (top panel) or ICC subtypes (bottom panel) is shown. See 

also Figure S1, Tables S2 and S3.
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Figure 3. Similar HCC and ICC tumor subtypes are found in Asians from China, Japan and U.S
(A, B) Subclass Mapping of Thai HCC versus Chinese (A) or Asian American (AsA, B) 

HCC subtypes. (C) Subclass Mapping of Thai ICC versus Japanese ICC subtypes. (D) 

Subclass Mapping of Thai HCC versus Caucasian American (EA) HCC subtypes. (E) 

Subclass Mapping of Thai ICC versus Caucasian ICC subtypes. For A-E, significantly 

similar relationships between clusters are represented by Bonferroni-adjusted p values from 

0 (similar) to 1 (different). Significant associations between clusters are shown in red with 

p<0.05 while differences between subtypes with p=1 are shown in blue. Subtypes in cohorts 
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with no matching subtype to the Thai cohort is indicated with an UM (unmatched). The 

lower panels show Kaplan-Meier survival analysis of the subtypes indicated in the 

corresponding upper panel, with the number of samples in each subtype indicated. (F) 

Kaplan-Meier survival analysis of the ICC or HCC C1 subtype among various cohorts 

indicated (top panels) at a 2-year survival time cutoff with log-rank p value. Forest plots 

(bottom panels) show the hazard ratio with 95% confidence interval (CI) of the C1 subtype 

among various cohorts with the European American HCC patients from TCGA as the 

referent group since these individuals have the best overall survival. See also Figure S2, 

Table S4.
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Figure 4. Mutation profiles and their functional consequences in Thai ICC and HCC
(A) Overview distribution of mutation types in ICC (n=129) and HCC (n=68). (B) Plot of 

ranked nucleotide substitutions presented as single nucleotide variant (SNV) density per Mb 

for ICC and HCC. (C) Proportions (mean ±SEM with 95% confidence interval) of SNVs 

identified in ICC and HCC. Differences calculated by Students t-test (*p<0.05). (D) 

Proportions (percentage) of SNVs in ICC and HCC as separated by either transitions or 

transversions. (E) Number (mean ±SEM) of transition (C>T) or transversions (A>C, C>T, 

and C>A) in ICC and HCC according to subtypes. (F) Overview of SNV per sample 

(number of variant changes per sample) according to different subtypes. See also Tables S5 

and S6.
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Figure 5. The landscape of driver genes in Thai ICC and HCC
An overview of driver genes in ICC (top panel) and HCC (bottom panel). Shown are genes 

with nonsynonymous and indel mutations of >5% frequencies. Genes were sorted by 

frequencies (right bar) and their alterations in each sample classified by cCluster-defined 

subtypes. Genes in bold are common between ICC and HCC. The status of hepatitis virus or 

Opisthorchis viverrini (OV) infection and variant frequency per sample are noted. 

Hypermutated samples are indicated as those with variant frequency above 10, indicated by 

the dotted horizontal line. See also Table S7.
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Figure 6. Integration of somatic copy number alterations (SCNA) and gene expression to define 
subtype-related driver genes in ICC and HCC C1 and C2 subtypes
(A) The frequency of chromosomal aberrations is shown for the ICC-C1 subtype (top panel) 

or ICC-C2 subtype (bottom panel). Copy number gain or loss is shown in red or blue, 

respectively. (B) The frequency of chromosomal aberrations is shown for the HCC-C1 

subtype (top panel) or HCC C2 subtype (bottom panel). (C) A VENN diagram showing a 

comparison between the number of driving events (high concordance of SCNA and gene 

expression) in the C1 subtype of ICC or HCC with onesided Fisher’s exact p=0.001 for the 

overlapping genes. (D) The relationship between high concordant genes and tumor subtypes 
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is shown along with the frequency of samples with copy number variation (CNV). In the 

upper panel, red bars represent copy number gain (Gain), blue bars represent copy number 

loss (Loss), while dark red or black bars represent chromosomal amplification with 

increased gene expression (Gain + Up) or chromosomal deletion with increased gene 

expression (Loss + Up). Gene expression is represented by the pink and light blue bars to 

indicate increased (Up) or decreased (Down) expression in tumors. In the lower panel, the 

ratio of samples showing copy number changes for each subtype is shown. The color of the 

column bars indicates the tumor subtypes shown on the y-axis in the upper panel. (E) 

Ingenuity Pathway Analysis of the 51 driver genes indicating a relationship with the PLK 

signaling network. (F) Representative images of ICC and HCC cases are shown based on 

immunohistochemical staining for ECT2 or PLK1. Scale bars represent 10 mm. (G) Kaplan-

Meier survival analysis of all ICC (top panel) and HCC (lower panel) cases based on the 

ratiometric combination of protein expression (ECT2/PLK1) is shown with log rank p value. 

Low and high cutoff is defined by ECT2/PLK1 ratio ≤1 for the low and >1 for the high 

group. See also Figure S3, Tables S8 and S9.
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Figure 7. Bile-acid metabolism and inflammation are altered in the HCC C1 and C2 subtype
(A) Hierarchical clustering of HCC (n=29) based on 81 metabolites. Samples are 

represented in columns, and metabolites are represented in rows. Metabolite abundance is 

represented in log2. (B) Ingenuity Pathway Analysis of the highly concordant metabolite/

gene network is shown. Upregulated metabolites in the C1 subtype or the C2 subtype are 

noted in pink or green, respectively. (C) Box-plots of the abundance of three representative 

bile-acid-related metabolites in C1 (n=15) and C2 (n=14) HCC samples are shown as first 

quartile, median and third quartile (bottom box, middle line and top box, respectively) with 

Student’s t-test p values. Whiskers represent minimum and maximum values. The number of 

cases in each subtype is indicated in parentheses. (D) CIBERSORT analysis of the HCC C1 

versus the HCC C2 subtype is shown. High or low associations between cell types are shown 

on a scale from red to blue (1 to −1). The size of circles indicates the significance of the 

association, with larger circles representing higher significance. (E) The relative fraction of 

leukocyte types associated with C1 and C2 are shown. (F) Box-plots of the abundance of 

three leukocyte types in C1 and C2 HCC samples are shown as first quartile, median and 
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third quartile (bottom box, middle line and top box, respectively) with Student’s t-test p 

value. Whiskers represent minimum and maximum values. See also Figure S4, Table S10.
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