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At the turn of the sixteenth century, Italian nobleman Luigi Cornaro 
found himself near death. Although he was only in his mid-thirties, 
years of gluttony and excess had taken their toll. Fearing his time was 
near, he vowed to change his lifestyle and decided to limit his future 
daily consumption of food to approximately 350 g (mostly bread, 
egg yolk and soup) accompanied by two glasses of wine per day1. 
He would religiously follow this diet for the next six decades until 
his death at the age of 102. Cornaro published a series of treatises, 
including Discorsi della vita sobria (Discourses on the Sober Life) 
that described the increased vitality and remarkable longevity that he 
attributed to his self-imposed dietary restrictions. Though now largely 
forgotten, these manuscripts provided one of the first tangible links 
between energy utilization, metabolism and the process of aging.

Cornaro’s early ideas have been bolstered by a recent avalanche of 
more controlled experiments, which have demonstrated in a wide 
range of organisms that reduction of food intake correlates with an 
extension in lifespan2. Included among this menagerie are various 
model organisms conducive to genetic manipulation. Research that 
combined a reduction of energy intake with genetically modified 
organisms has revealed key pathways that link nutrient sensing with 
longevity. The identification of these targets has subsequently led to 
pharmacological interventions that can potentially serve as dietary-
restriction mimetics: small molecules that somehow fool the body 
to act as if nutrients are always scarce. Over the years, investigators 
seeking to understand the connection between metabolism and aging 
have placed particular emphasis on understanding how mitochon-
dria might participate in this process. Whole-genome RNAi-based 
screens in model organisms have furthered this interest, consistently 
identifying nuclear-encoded mitochondrial proteins as important 
regulators of longevity3,4. These and other observations, including 
mouse models of mitochondrial-dependent aging5,6, have tightened  
the association between bioenergetics and lifespan, although  

substantial gaps still remain regarding the nature and importance 
of these connections.

Here I review the link between metabolism and aging. I place 
particular emphasis on those longevity pathways that sense nutri-
ent availability, the evolving role that mitochondria might have in 
the aging process, how an understanding of these energetic pathways 
might lead to new insights into age-related diseases and the growing 
indication that, by following in Cornaro’s footsteps, we may soon turn 
aging into a pharmacologically modifiable condition.

Metabolic effects of dietary restriction
Energy partitioning. Aging is accompanied by a host of metabolic 
changes, including modulation of mitochondrial function, a decline 
in insulin sensitivity and alterations in substrate utilization7. These 
changes may contribute to the aging phenotype and predispose an 
individual to age-related conditions, but correlation and causation are 
not easily distinguished by assessing metabolic differences between 
young and old organisms. Perhaps more insight can be obtained by 
dissecting how metabolic pathways are affected by environmen-
tal or genetic manipulations that are known to regulate longevity.  
In mice and rats, lifelong caloric restriction (CR) can, under cer-
tain circumstances, extend lifespan by up to 50% compared to that of  
ad libitum–fed control animals8. The magnitude of this effect has 
prompted considerable efforts to understand how limiting food intake 
translates into longer life and, in particular, the genetic and biochemi-
cal pathways mediating this effect.

It is important to realize that even a seemingly simple dietary 
regime such as CR can produce a myriad of physiological and met-
abolic alterations that may or may not be relevant to the observed 
increase in lifespan (Fig. 1). For instance, when CR is begun early in 
life, mice placed on a CR diet are smaller than animals that are fed a 
control diet8. This has led to considerable speculation that the lifespan  
benefits of CR have some tradeoffs between the growth of the organ-
ism and ultimate longevity. This concept of energy partitioning is 
crucial for understanding how metabolism might regulate the aging 
process. Nonetheless, the relationship between organismal size and 
longevity is complex. For instance, the first long-lived, genetically 
modified mouse model was the Ames dwarf mouse9. These animals 
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Here we review the environmental and genetic manipulations that link cellular and organismal metabolism to aging. 
In particular, we explore how nutrients are sensed and how various intracellular energy nodes seem to coordinate 
distinct metabolic alterations linked to extended longevity. In addition, the role of mitochondria as both a metabolic 
and signaling organelle is discussed. Finally, we review a host of new targeted pharmacological approaches that 
attempt to exploit the connection between aging and metabolism to treat a wide range of age-related diseases. 
Together, these insights are beginning to reveal answers to century-old mysteries and are providing a future road map 
for the rational extension of lifespan. 
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have a mutation in the paired-like homeodomain factor 1 (Prop1) 
gene that leads to a marked alteration in the function of the anterior 
pituitary gland, which in turn leads to a reduction both in growth 
hormone release from the pituitary and in insulin and insulin growth 
factor 1 (IGF1). These factors all contribute to the reduced size  
of the Ames dwarf mouse. Whereas Ames mice and mice that  
have undergone CR are similar in size and share similar increases 
in overall lifespan, evidence suggests that the mechanism that  
enables the small Ames mice to live longer may be mechanistically dis-
tinct from the lifespan extension seen after nutrient restriction. First, 
when normalized to body size, food intake for Ames mice actually 
exceeds that of control mice10. More importantly, when Ames mice are 
placed on a CR diet, they can experience further extended lifespans, 
with median lifespans that are nearly twice those of control mice fed a 
normal diet11. Thus, although CR can result in a smaller animal, and 
although many genetic models that extend lifespan have similar effects 
on body size, the mechanisms that underlie the observed longevity 
benefits in these various models do not seem to completely overlap.

Species-specific effects of caloric restriction. The metabolic effects of 
CR can be profound but species specific. In small rodents, a sev-
eral-degree difference in body temperature is observed8. In contrast, 
in a healthy human population when individuals are randomized to 
consume either a normal diet or a diet intended to reduce caloric 
intake by 25%, core body temperatures are reduced very modestly  
(0.2 °C)12 if at all13. In both experimental mouse models and humans, 
CR does have marked effects on weight and white adipose tissue 
(WAT) biology. Although overall weight loss is common, a large frac-
tion of the weight loss comes from the WAT and, in particular, visceral 
fat stores14,15. Interestingly, the common strains of laboratory rodents 
all experience extended lifespans in response to CR, but this is not 
a universal effect. Indeed, certain inbred mice strains show only a 
modest effect or even a reductive effect on lifespan after CR16. One 
variable that seems to correlate with the beneficial effects of CR is the 
degree of fat loss induced by food restriction17. Paradoxically, in an 
analysis of nearly 40 strains of mice, the beneficial longevity effects 
of CR were actually correlated with those mice that were best able to 
maintain fat stores, in the setting of a 40% CR regimen17.

Whereas the effects of CR on body temperature and body fat are 
quite consistent and reproducible, the effect of CR on basal meta-
bolic rate (BMR) is more of an unsettled question. In general, resting 
metabolic rate is determined by oxygen consumption normalized to 
body size. By using such strategies, a number of investigators have 

concluded that BMR does not change in the setting of CR, whereas 
other studies have led to the conclusion that BMR is reduced8.  
These discrepancies are in part due to differences in how the measurement  
of oxygen consumption is normalized. Various schemes have been 
used, including normalizing to total body weight; fat-free mass; body 
weight raised to various exponents (for example, 0.75 or 0.67); or the 
combined weight of various internal organs (for example, heart, liver, 
kidney and brain; or liver, mesenteric fat and muscle)18,19. Part of 
the difficulty is that, as mentioned with regard to WAT, the effects of  
CR are not uniform across all tissues and organs. Given that different 
tissues have different metabolic requirements, scaling to body mass or 
some exponent of total body mass may lead to erroneous interpreta-
tion of the metabolic data when comparing a normally fed animal to 
one that has undergone a CR regimen.

Besides an alteration in overall metabolic rate, another bioen-
ergetic effect of CR is a decreased reliance on carbohydrates and 
an increased utilization of fatty acid oxidation (FAO)8. Similarly,  
certain long-lived mice, such as the previously discussed Ames mouse, 
also display greater reliance on lipids than carbohydrates when com-
pared to wild-type mice20. Most of these measurements regarding 
age-dependent changes in substrate utilization are based on the res-
piratory quotient, a global marker of CO2 eliminated over consumed 
oxygen that indirectly reflects the ratio of carbohydrate to fatty acid 
metabolism. Recent more direct measurements of substrate utiliza-
tion in aging human muscle demonstrated that there is also evidence 
of impaired glucose utilization21. The results of some randomized 
human trials indicate that caloric restriction bolsters the body’s  
ability to adapt to use whatever energy substrates are available, be 
those glucose or fatty acids22. This adaptation is known as metabolic 
flexibility, a property that has long been linked to metabolic health 
and, increasingly, longevity7. There is also a strong link between CR 
and reduced inflammation, shown, for instance, in randomized data 
from nonhuman primates23. The exact molecular basis for these 
effects is unclear; however, it is of interest that a recent report has 
linked a rise in serum β-hydroxybutyrate, a ketone metabolite known 
to increase during fasting, to inhibition of the inflammasome24.  
Such metabolic-based inhibition of inflammasome activation may be 
at least one mechanism through which CR could suppress detrimental 
activation of the immune system. Other possibilities include a CR-
induced delay in thymic involution, thus preserving T cell function25, 
or a reduction in oxidative stress-induced inflammation26. Finally, 
there are two ongoing randomized trials involving the effects of CR 
on healthy rhesus monkeys27,28. These studies differ in their defini-
tion of the control and CR diets, and these differences in experimental 
design most likely explain the studies’ conflicting results concerning 
the effects of CR on nonhuman-primate lifespan: one study has shown 
an increase in interim lifespan whereas the other has not. However, 
both groups have seen beneficial effects of CR on certain metabolic 
parameters, including weight and triglyceride levels.

Nutrient sensing and longevity
mTOR. Numerous studies have attempted to understand how food 
availability and metabolism are molecularly coupled to lifespan. One 
clear connection is through the mechanistic target of rapamycin 
(mTOR). mTOR is a serine-threonine kinase that functions as an 
intracellular energy sensor and, in mammalian cells, exists in two 
distinct protein complexes: mTORC1 and mTORC2. In the setting of 
growth factor stimulation or a rise in intracellular amino acid levels, 
mTOR is activated and, in turn, regulates a host of downstream events 
that modulate growth and overall metabolism29. Genetic inhibition 
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Figure 1  The myriad effects of caloric restriction (CR). Reduction of 
nutrient intake results in many metabolic and physiological changes.  
The net effect of these changes is an increase in the median and 
maximum lifespan of a wide array of organisms. RER, respiratory exchange 
ratio; WAT, white adipose tissue.
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of mTOR signaling can extend lifespan in a wide range of organisms, 
including worms30, flies31 and mice32,33. In yeast and worms, under 
certain experimental conditions, adding dietary restriction to genetic 
inhibition of mTOR does not result in further lifespan extension, 
indicating that mTOR may function as a central mediator of CR’s  
beneficial effects34,35. Although the data suggest that reducing 
mTOR signaling extends lifespan in a number of species, the exact  
mechanism through which these effects are achieved remains unclear. 
This lack of clarity is due to certain key functions of mTOR, which, 
befitting its role as an energy sensor, regulates a number of down-
stream effectors that have been linked to lifespan. These roles include 
the regulation of protein synthesis, mitochondrial function, substrate 
utilization, insulin signaling and autophagic flux29,36.

Evidence suggests that mTOR can also interact directly with the 
mitochondria37, although the exact role of mTOR in metabolism 
seems to be complex and tissue specific. For instance, in transformed 
mammalian cell lines, there is evidence that mTOR positively regulates 
mitochondrial respiration38,39, whereas observations in yeast suggest 
that mTOR acts as a negative regulator of oxygen consumption40. 
This dichotomy is also seen in vivo; disruption of mTORC1 activity 
in mice has been observed to have contrasting effects on mitochon-
drial function in skeletal muscle and adipose tissue41,42. Interestingly, 
long-lived mice that are hypomorphic for mTOR expression (i.e., they 
express mTOR at roughly 25% of wild-type levels) demonstrate no 
clear alteration in overall metabolic rate33. Finally, although mTOR 
acts as an important intracellular energy sensor that is increasingly 
linked to the beneficial effects of interventions such as CR, it is impor-
tant to note that this pathway can also act in a non-cell-autonomous 
fashion. The best example of this may come from analyzing how CR 
alters intestinal stem cell (ISC) function. Recent evidence suggests 
that a reduction in mTORC1 activity underlies the beneficial effect 
of CR on ISC activity in mice. This effect is not mediated by mTOR 
activity in the stem cell, but rather by the effect of dietary restriction 
on mTORC1 activity within the surrounding niche cells43.

Sirtuins. The sirtuin family of proteins is another set of potential 
mediators linking nutrient availability to lifespan. In mammals, there 
are seven sirtuin family members whose activities include nicotina-
mide adenine dinucleotide (NAD)-dependent deacetylation of both 
histone and nonhistone proteins. Increasing evidence suggests that 
certain sirtuin family members can catalyze the removal of acyl moi-
eties of even longer carbon lengths, including malonyl and succinyl 
groups, from specific target proteins such as enzymes involved in the 
tricarboxylic acid cycle (TCA) and fatty acid metabolism44. The link 
between the enzymatic activity of various sirtuin family members 
with NAD and various TCA intermediates (for example, acetyl CoA, 
succinyl CoA, etc.) suggests that this family of proteins might sit at 
the crossroads of metabolism and longevity. In support of such an 
assumption, initial reports suggested that the sirtuins mediated the 
longevity effects of CR in both yeast45 and flies46. However, some 
latter reports have challenged whether or not sirtuins have a central 
role in the CR-mediated effects observed in yeast47.

In mice, levels of the sirtuin SIRT1 seem to be regulated by nutrient 
availability48,49, although as discussed for mTOR activity, this might 
involve tissue-specific regulation50. Moreover, mice lacking SIRT1 
expression no longer experience an increase in lifespan when placed on 
a CR regimen51. Interestingly, brain-specific overexpression of SIRT1 
results in long-lived animals which, when they age, seem to have pre-
served mitochondrial morphology along with increased oxygen con-
sumption and more robust physical activity52. Similarly, whole-body 

overexpression of SIRT6 can result in lifespan extension for male mice53.  
The sirtuin family members that localize to the mitochondria (SIRT3, 
SIRT4, and SIRT5) have widespread metabolic effects, including reg-
ulating oxidative phosphorylation54, altering fatty acid oxidation55 
and modulating mitochondrial oxidant production56,57. Proteomic 
analysis suggests that nearly 65% of mouse mitochondrial proteins 
are acetylated, and the majority of these have more than one identified 
acetylation site58. Moreover, the mitochondrial acetylome is dramati-
cally reshaped by nutrient availability and by the presence or absence 
of SIRT3 (ref. 58). Besides increasing lifespan, CR may delay some 
age-related diseases, and there is evidence that in hearing loss, SIRT3 
activity is required to mediate the beneficial effects of CR on this age-
related condition59. Similarly, the global and presumed beneficial tran-
scriptional program induced by CR requires SIRT3 (ref. 60).

AMPK and autophagy. The metabolic sensor adenosine monophos-
phate (AMP)-activated protein kinase (AMPK) and the important 
physiological process of lysosomal-dependent recycling known as 
autophagy are two other critical links between nutrients and lifespan. 
When intracellular energy stores are depleted, the levels of lower-energy 
adenine nucleotides (for example, AMP and adenosine diphosphate 
(ADP)) increase in proportion to higher-energy forms (ATP). AMPK is 
activated by binding AMP or ADP, and in turn, AMPK regulates a host 
of metabolic pathways that, in general, increase energy supplies and 
reduce energy demand61. In worms and flies, certain modes of dietary 
restriction seem to require the activation of AMPK orthologs in order 
to achieve lifespan extension62–64. However, this requirement often 
depends on the degree of dietary restriction and the composition of the 
diet given65. Similarly, in mammalian tissues, the activation of AMPK 
depends on both the tissue and the CR protocol carried out66. In mam-
mals, one of AMPK’s many targets is UNC-51–like kinase 1 (ULK1), 
a key regulator of autophagosome formation. The ability of AMPK  
to regulate autophagy through the phosphorylation of ULK1 (which 
is the mammalian ortholog of the protein encoded by the yeast essen-
tial autophagy-related 1 gene Atg1) is increasingly thought to be an 
important modulator of organismal aging67. Interestingly, these effects 
can function as previously discussed for mTOR signaling in a non- 
cell-autonomous fashion. For instance, in Drosophila, although activation 
of AMPK in the nervous system triggers induction of autophagy in the 
brain, it also unexpectedly and simultaneously induces the same effect 
in distal tissues such as the intestines67. These distal effects were attrib-
uted to a reduction in circulating insulin-like peptide levels. Autophagic 
induction seems to be observed in a growing number of pathways that 
modulate lifespan. For instance, the life-extending effects of mutations 
in the insulin-like signaling pathway (for example, Daf-2) in worms 
seem to be dependent on a functioning autophagic system68. Similarly, 
the beneficial effects of CR in Caenorhabditis elegans or of methionine 
restriction in yeast do not occur when autophagy is inhibited69,70.

Although evidence suggests that the induction of autophagy is a 
downstream mediator of various life-extending interventions, there is 
also evidence that increased autophagy is by itself sufficient to extend 
lifespan. Increased expression of the essential autophagy-related 5 gene 
Atg5 resulted in transgenic mice that had an approximate 17% increase 
in lifespan when compared to control non-transgenic animals71. As 
these mice aged, they also exhibited improvements in insulin sensi-
tivity, redox homeostasis and muscle strength. Similarly, increased 
expression of the basic helix-loop-helix (HLH) transcription factor 
HLH-30, the worm ortholog of the mammalian transcription factor EB 
(TFEB), augments the expression of a number of essential autophagic 
genes and produces a corresponding increase in lifespan72.
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IGF and insulin signaling
As suggested in the previous section, there is a strong association, 
particularly in model organisms, between insulin/IGF-1 signaling 
and lifespan. This relationship first came to light with analysis of  
C. elegans mutants that lived twice as long as their wild-type controls 
and that were subsequently shown to have a mutation in a receptor 
that bears homology to the mammalian insulin/IGF-1 receptor73,74. 
These Daf-2 mutants have been fundamentally important in dissect-
ing the molecular basis of aging in worms. Subsequent analysis has 
identified the transcription factor Daf-16 as an important downstream 
mediator of Daf-2’s effects. Daf-16 is homologous to the mammalian 
FOXO family of forkhead transcription factors, and it was demon-
strated to regulate hundreds of downstream targets, including many 
genes involved in metabolism and the oxidative stress response75.  
A similar reduction of signaling through this axis also results in 
lifespan extension in Drosophila76. There is also evidence in mam-
malian models for the importance of this pathway. We have already 
discussed the Ames dwarf mouse that has, among other defects, a 
reduction in insulin/IGF-1 signaling. Similar but more targeted 
approaches that alter the IGF receptor or IGF-1 bioavailability have led 
to increased longevity, although sometimes these effects are strain or 
sex specific77–80. Intriguingly, genetic analyses of long-lived humans 
have often correlated mutations in the IGF-1 receptor or in FOXO 
transcription factors with extended health span and longevity81,82. 
Finally, secreted factors such as insulin/IGF-1, or as mentioned in the 
context of dwarf mice, secretion of factors such as growth hormone, 
highlight the role of the somatotrophic axis in coordinating growth, 
metabolism and longevity83. Similarly, there is growing evidence that 
neuroendocrine regulation is critically important for both energy 
homeostasis and aging52,84.

The CR-sensing network. Although we have focused on the various 
nutrient-sensing pathways in isolation, numerous important connec-
tions exist between these pathways (Fig. 2). For instance, in the case 
of autophagy, both mTOR and AMPK can regulate ULK1 activity85. 
Similarly, the sirtuins, via deacetylation, are also important deter-
minants of autophagic flux86. The IGF-insulin signaling pathway, 
which represents another key axis that connects metabolism with 
aging, also helps to connect AMPK, mTOR, sirtuins and autophagy 
together48,65. In many cases, it is difficult to unambiguously determine  
which component lies upstream or downstream, as for instance, 
AMPK can be viewed as both a regulator and a target of mTOR sig-
naling. Nonetheless, the tapestry that is emerging is one in which 
lifespan regulation is woven together by the coordinated activities of 
various key energy-sensing nodes in the cell.

Mitochondria and aging
As previously mentioned, numerous screens in model organisms have 
implicated nuclear-encoded mitochondrial proteins in the regulation 
of lifespan3,4. Most of these genetic interventions altered the expres-
sion of components of the electron transport chain that impaired 
mitochondrial function and yet resulted in a longer lifespan. This is 
difficult to conceptualize because human aging is generally associ-
ated with a decline in mitochondrial function87. Similarly, in mouse 
models that are engineered to markedly increase mitochondrial muta-
tional load, there is evidence of an accelerated aging phenotype5,6. 
The best explanation for these seemingly conflicting observations is 
that they vary according to the magnitude of mitochondrial impair-
ment, which, in genetic screens, may have to do with the degree of  
knockdown achieved. For instance, whereas modest knockdown 

of various mitochondrial electron transport components leads  
to increased lifespan in C. elegans, higher-efficiency knockdown, 
which increases mitochondrial impairment, shortens lifespan88. 
There is also genetic evidence in mammalian models that mild 
impairment of mitochondrial function might extend lifespan. For 
instance, in a small cohort of animals, mice lacking one allele of the 
Coq7 gene (Mclk1+/−), which is essential for ubiquinone biosynthesis, 
lived longer than mice with the Mclk1+/+ genotype89. Interestingly, 
Mclk1−/− mice are not viable, again demonstrating that modest but  
not severe mitochondrial impairment extends lifespan. A similar 
genetic alteration that leads to reduced stability for a particular  
cytochrome c oxidase assembly factor also results in a mouse that 
lived longer than the wild-type control90.

Work predominantly in C. elegans has demonstrated that a number 
of pathways are activated after mild mitochondrial impairment91.  
The worm ortholog of the mammalian hypoxia inducible factor 1 
(HIF-1α, encoded by hif-1) is one important mediator. For several of 
the long-lived mitochondrial mutants, activation of hif-1 is required 
for the observed increased lifespan92. Interestingly, the activation of 
hif-1 seems to be triggered by an increase in reactive oxygen species 
(ROS) production resulting from genetically induced mitochondrial 
impairment. This increase in mitochondrial ROS acts as a signal 
to activate hif-1 and thereby increase lifespan. Subsequent studies  
have demonstrated that hif-1 not only responds to mitochondrial 
ROS but also then amplifies ROS production93. As in mammalian 
cells, this augmented ROS production might have a role in immune 
surveillance93. Other important mediators of the longevity effects of 
mild mitochondrial dysfunction in the worm include the p53 ortholog 
CEP-1 (ref. 94), the homeobox protein CEH-23 (ref. 95), the apoptotic 
factor CED-3 (ref. 96) and skinhead-1 SKN-1, the C. elegans ortholog 
of the mammalian transcription factor NF-E2 (Nrf2)97. Interestingly, 
in mammalian cells, the activation of Nrf2 is due to a rise in intracel-
lular ROS levels, which triggers a broad transcriptional antioxidant 
response. Dysregulation of this protective response might be impor-
tant in mammalian aging98. In worms, SKN-1 directly associates with 
the mitochondria99, and this factor mediates the increase in lifespan 
seen with certain perturbations that simultaneously increase ROS 
levels and lifespan100. Similarly, activation of Nrf2 is essential for the 
anti-carcinogenic effects of caloric restriction101.

Energy
intermediate

Sensor

Output

Amino acids NAD+/NADH AMP/ADP

mTOR Sirtuins AMPK

ULK1 ULK1Deacetylation

Autophagy

Figure 2  Interaction between various nutrient-sensing and longevity 
pathways. Three nutrient-sensing pathways are depicted: mTOR, the 
sirtuin family of proteins and the energy-sensing kinase AMPK. These 
proteins sense and respond to various different energetic and biosynthetic 
intermediates. In addition, they have both common and disparate 
downstream targets, including the serine/threonine-protein kinase ULK1. 
One area of overlap is in the regulation of autophagy; both the sirtuins 
and AMPK act to positively regulate autophagy whereas mTOR serves as a 
negative regulator. For simplicity, interactions between the various sensors 
(mTOR, sirtuins and AMPK) are not shown. AMP, adenosine monophosphate; 
ADP, adenosine diphosphate; NAD, nicotinamide adenine dinucleotide. 
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Implicit in the previous discussion is the idea that the produc-
tion of ROS by the mitochondria results in an increase in lifespan.  
This concept seems antithetical to the long-held belief, first articu-
lated by Denham Harman in the 1950s, that ROS actually fuels the 
aging process102. Although there is certainly evidence that mitochon-
drial ROS can be detrimental and limit lifespan103, at least in certain 
contexts, a small increase in the production of mitochondrial ROS can 
also trigger the activation of redox-sensitive pathways, resulting in 
long-lasting protective and life-extending effects. The general concept 
that a little stress can protect against larger, subsequent stresses is often 
termed hormesis, and when specifically concerning the mitochon-
dria, mitohormesis104–106. It is also apparent that ROS levels are not 
the only mediator of mitochondrial stress that can increase lifespan.  
In one study, it was demonstrated that mitochondrial dysfunc-
tion in the brain triggered the production of an as yet undefined 
secreted factor that could then induce the mitochondrial unfolded 
protein response (UPRmt) in distal tissues such as the intestines107.  
These observations suggest that, at least in the worm, mitochondria in 
different tissues have mechanisms through which they can communi-
cate, and so expands on the non-cell-autonomous mechanisms already 
discussed. Similar observations in flies have also demonstrated that 
mitochondrial dysfunction in skeletal muscle can trigger the UPRmt in 
that tissue and that it can induce global, non-cell-autonomous meta-
bolic effects108. These reports highlight the growing interest in the 
activation of the UPRmt in a, as yet not completely understood, path-
way that leads to increased lifespan (Fig. 3). In the presence of cer-
tain mitochondrial stresses, various quality-control mechanisms are 
induced, including unfolded, misfolded or aggregated mitochondrial 
proteins. This includes activation of the UPRmt mitochondrial-to-
nuclear signaling pathway discussed above that ultimately upregulates 
various mitochondrial chaperone proteins in an attempt to restore 
protein homeostasis. The intermediaries between the mitochon-
dria and the nucleus may include ROS production but other, non- 
redox-dependent signaling pathways also seem to be involved109.  
In C. elegans, one important signaling mediator is the activating  
transcription factor associated with stress (ATFS-1), which can 
shuttle between the mitochondria and nucleus110. At present, the  
mammalian ortholog of ATFS-1 remains unidentified. As discussed 
above, in the context of increased ROS levels, there are growing  
indications that the UPRmt not only has a role in aging but also in 
immune surveillance111,112. Finally, although most studies have been 
in model organisms, many of these same pathways seem to be opera-
tive in mammalian cells, and activation of the UPRmt in mice can 
increase lifespan113.

Mitochondrial turnover—namely, the balance between the synthesis 
of new mitochondria (biogenesis) and the removal of old and damaged 
mitochondria (mitophagy)—represents an additional process that con-
nects mitochondria to aging. Evidence suggests that interventions that 
increase longevity, such as CR, stimulate the mitochondrial-biogenesis  
arm through the induction of peroxisome proliferation–activated 
receptor gamma, coactivator 1 alpha (PGC-1α) expression114,115. A 
decline in biogenesis either through reduced PGC-1α activity, or via 
other pathways, is thought to contribute to various age-related pathol-
ogies116. Mitochondrial quality control also requires the removal of 
mitochondria that are old and damaged. Here again, aging seems to pro-
duce a gradual decline in autophagic flux117, and it is presumed that the 
more specialized process of mitophagy follows a similar age-dependent  
decline. Interestingly, in C. elegans, disrupting mitophagy does not 
alter the lifespan of wild-type worms, but it does abrogate the increased 
longevity seen in mutants with either mitochondrial dysfunction  

or reduced intensity of insulin/IGF-1 signaling118. Moreover, this 
recent study suggested that damaged mitochondria release ROS,  
which in turn activates SKN-1. The activation of SKN-1 can then 
simultaneously regulate both the biogenesis and mitophagic pathways 
in the organism118. Finally, as was seen with the overexpression of 
core autophagy factors, overexpression of gene products that seem to 
selectively stimulate mitophagy also seem to extend lifespan119.

Metabolic-based therapy for aging
The identification of key metabolic pathways linked to longevity has 
provided an impetus for targeting these factors pharmacologically 
with the hope of delaying aging and ameliorating age-related diseases. 
One of the first forays into this arena arose from a chemical screen 
that looked for direct activators of SIRT1. This effort identified the 
natural plant polyphenol resveratrol as one such sirtuin activator120. 
Considerable controversy has ensued as to whether resveratrol acts 
as a direct sirtuin activator or whether it instead activates sirtuins in 
an indirect fashion121. Although the mechanism is not yet under-
stood, considerable evidence has been obtained demonstrating that 
resveratrol has beneficial cardiovascular and metabolic effects in ani-
mal models122,123, nonhuman primates124,125 and human subjects126. 
Yet when rodents are fed a normal diet, resveratrol does not seem to 
extend their lifespan123. In contrast, newer more specific activators of 
Sirt1, such as the compound SRT1720, seem to maintain the beneficial 
metabolic effects that are seen with resveratrol while also providing a 
notable, albeit modest, increase in lifespan127. Similar life-extending 
benefits have been observed when mice are treated with the mTOR 
inhibitor rapamycin128.

The anti-diabetic drug metformin, which acts at least in part to 
inhibit mitochondrial function and stimulate AMPK activity, has also 
shown promise. In worms, metformin extends lifespan by means of a 
mitohormetic effect involving the production of ROS129. Similar data 
has been obtained in mice from cases in which, again, metformin 
is able to improve healthspan and lifespan130. Befitting a drug that 
may slow aging, metformin seems to slow the development of age-
related diseases. Most notably, epidemiological evidence suggests that  
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diabetic patients taking metformin have somewhere in the range of a 
30–50% decline in expected cancer incidence131. Given that sirtuins, 
mTOR and AMPK all regulate autophagy, it is likely that some of the 
beneficial effects of resveratrol, rapamycin and metformin involve 
this pathway. Other naturally occurring autophagy activators, such as 
the polyamine spermidine, can also extend lifespan in various organ-
isms and also seem to slow debilitating conditions such as age-related 
decline in cognition132,133.

Finally, there is considerable interest in finding strategies to boost 
intracellular NAD metabolite levels to counteract aging and age-
related disease. Biochemical levels of tissue NAD+ seem to decline as 
a function of age in both model organisms and people134. Although 
the basis for this age-dependent decline is incompletely understood, 
a drop in NAD+ metabolite levels seems to reduce sirtuin activ-
ity, as these proteins are by and large NAD+-dependent enzymes. 
Augmenting NAD+ levels activates the UPRmt pathway, improves 
metabolic parameters, and remarkably, extends lifespan116,135–137. 
Other evidence suggests that restoring ‘youthful’ NAD+ levels may 
delay the occurrence of age-dependent diseases138.

Conclusions
As discussed, a number of observations in a wide range of  
experimental models have linked metabolism to aging. Nonetheless, 
despite considerable progress in the field, at present, aging lacks a 
clear, unifying theory into which all these disparate observations 
can be easily incorporated. Unlike our understanding of cancer 
progression, which is firmly rooted in a genetic model propelled by 
the gain and loss of oncogenes and tumor suppressors, or cardio-
vascular disease, which has clearly delineated steps that accelerate 
the formation of lipid-laden plaques, aging still largely represents 
a collection of intriguing yet unconnected data sets. Although the 
free-radical theory of aging held sway for a time102, it is clear that the 
life-extending benefits of low-level ROS, as described above, cannot 
be readily incorporated into such a theory. How then can we frame 
the relationship between metabolism, energetics and aging? In my 
mind, the answer may revolve around the use and partition of energy 
by an organism.

Since the 1920s, when Raymond Pearl described his rate-of-living 
hypothesis, a relationship between lifespan and metabolic rate has 
been postulated. Yet it is also clear that metabolic rate alone is not  
an accurate predictor of lifespan. For instance, as discussed above,  
CR extends lifespan but has no major effect on adjusted metabolic 
rate. In addition, although there is a linear relationship between 
metabolic rate and lifespan for many organisms, various animals 
(for example, naked mole rats, bats, humans, etc.) clearly fall off the 
curve139. The energy used by an organism needs to be partitioned into 
various tasks, including normal daily activities, such as movement and  
feeding, the synthesis of new molecules and the maintenance of  
existing structures. The latter reflects the energy required to repair 
damaged membranes, proteins and nucleic acids. It may be instructive 
to view interventions such as CR, or genetic manipulations such as 
reducing mTOR activity, as metabolic strategies to reset this partition 
of energy (Fig. 4). In such a scenario, these life-extending interven-
tions result in a larger proportion (and absolute amount) of resources 
going toward maintenance functions and away from new growth and 
biosynthetic activities. In such an energy-partition theory of aging, 
this reset could be triggered by intracellular stress-signaling path-
ways as described but would also require coordination throughout 
the organism, presumably through non-cell-autonomous means.  
The existence of these circulating factors is hinted, as discussed, 

by various observations in model organisms. In higher organisms, 
hormones such as fibroblast growth factor 21 (FGF21) are secreted 
in response to stresses such as prolonged fasting or mitochondrial 
dysfunction140. Interestingly, FGF21 is known to inhibit somatic 
growth, and when overexpressed, to extend the lifespan of mice141. 
The elucidation of additional circulating factors, as well as intracellu-
lar mediators that reset metabolism and potentially shift the energetic 
balance toward reparative processes, may provide a wealth of new 
therapeutics for aging and age-related diseases. Perhaps then we may 
finally understand the complex relationship between metabolism and 
aging. We might also, for the first time, fully understand the simple 
advice that Luigi Cornaro prescribed 500 years ago.
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