Efficacy of Recombinant Methionyl Human Leptin Therapy for the Extreme Insulin Resistance of the Rabson-Mendenhall Syndrome

ELAINE COCHRAN, JANICE RYAN YOUNG, NANCY SEBRING, ALEX DEPAOLI, ELIF AÑIOGLU ORAL, AND PHILLIP GORDEN

Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases (E.C., J.R.Y., E.A.O., P.G.), and Clinical Center Nutrition Department (N.S.), National Institutes of Health, Bethesda, Maryland 20892; Amgen, Inc. (A.D.), Thousand Oaks, California 91320; and Department of Medicine, Division of Endocrinology, University of Michigan (E.A.O.), Ann Arbor, Michigan 48109

Recombinant methionyl human leptin (r-metHuLeptin) therapy has shown clear efficacy in the treatment of severe insulin resistance associated with lipodystrophy syndromes and low leptin levels. We treated two siblings with Rabson-Mendenhall syndrome (severe insulin resistance and presumed insulin receptor mutations). The brother and sister, aged 13 and 11 yr, respectively, had severe acanthosis nigricans, insulin resistance, and diabetes. Both were taking 2000 mg metformin and 2 mg rosiglitazone daily; the brother was also taking 300 U regular insulin daily. In contrast to our lipoatrophic patients treated with r-metHuLeptin, these two patients had a higher percent body fat and low-normal fasting triglycerides [42 mg/dl (0.37 mmol/liter), male sibling, and 33 mg/dl (0.47 mmol/liter), female sibling]. The siblings were treated with r-metHuLeptin therapy for 10 months and demonstrated a 40–60% decrease in fasting serum glucose and insulin levels and improved glycated hemoglobin. There was corresponding improvement in glucose and insulin tolerance during leptin therapy. This is the first report of a partial, but significant, effect of r-metHuLeptin administration in patients with extreme insulin resistance with a presumed insulin receptor mutation and low serum triglyceride levels. (J Clin Endocrinol Metab 89: 1548–1554, 2004)

The Rabson-Mendenhall (RM) syndrome is one of the most severe forms of insulin resistance, usually associated with marked decrease in insulin binding to its cell surface receptor caused by a mutation in the insulin receptor gene (1–4). The syndrome is characterized by marked insulin resistance, hyperinsulinemia, acanthosis nigricans, growth retardation, and various other phenotypic manifestations. Children initially have postprandial hyperglycemia, but eventually develop constant hyperglycemia from a progressive decline of endogenous insulin secretion. The administration of recombinant methionyl human leptin (r-metHuLeptin) has been shown to improve insulin-stimulated hepatic and peripheral glucose metabolism in severely insulin-resistant lipodystrophic patients (5, 6). The mechanism by which leptin improves insulin sensitivity in lipodystrophic patients is unclear. The improvement has been correlated with the decrease in triglyceride content that occurs in serum, liver, and muscle during leptin therapy, but it is unclear whether this completely accounts for the increase in insulin sensitivity (6). Unlike lipodystrophic patients, patients with RM syndrome do not exhibit steatosis or hypertriglyceridemia. Treatment options are very limited in these patients, and their prognosis is poor (7). To determine whether leptin treatment might improve insulin sensitivity in a nonlipodystrophic condition, we studied two siblings with RM syndrome. The two siblings also had relatively low leptin levels, diabetes mellitus, and acanthosis nigricans.

Subjects and Methods

Patients

Two siblings with RM syndrome were studied. Both had histories of hypoglycemia when younger, growth retardation, multiple episodes of otitis media, and speech delay. By age 3 yr for the female and 4 yr for the male, they had been found to have acanthosis nigricans. The female was diagnosed with hyperinsulinemia at age 7 yr, and the male was found to be hyperinsulinemic as early as age 4 yr. Diabetes was first recognized at age 7 yr for the female and 9 yr for the male. The female was taking thiazolidinediones since age 8 yr, and the male since age 9 yr. Metformin was added to the treatment regimen at age 8 yr for the female and age 10 yr for the male. Insulin was added to the brother’s treatment when he was age 12 yr.

Both children have fasting hyperglycemia, fasting hyperinsulinemia, severe glucose intolerance, abnormal dentition, and severe acanthosis nigricans, and hirsutism is present in the female (Fig. 1). Although insulin resistance is clear in these two siblings, they have not been studied by genetic analysis, and the likelihood that they have a mutation in their insulin receptor is presumed by their similarity to previously studied patients (1–4). Although in the past our laboratory has studied insulin receptor mutations, this technology is not available in the laboratory at present.

Study design

The study was designed as a 1-yr pilot study of two siblings. Data were collected at the Clinical Center of the NIH. Amgen, Inc. (Thousand Oaks, CA), provided recombinant methionyl human leptin. Data were held and analyzed by the NIH investigators. The study was approved by the institutional review board of NIDDK, and written informed assent and consent were obtained from the siblings and their parents. The response of each sibling was compared with his/her baseline values. The siblings were evaluated as in-patients before treatment, and again
Biochemical analyses

All samples for analyses were collected in the morning after an overnight fast. Serum glucose and triglyceride levels were determined according to standard methods with the use of automated equipment (Hitachi, Roche, Indianapolis, IN). Glycosylated hemoglobin values were measured by ion exchange HPLC (Bio-Rad Laboratories, Hercules, CA). Serum insulin levels were determined by immunoassays with the use of reagents provided by Abbott Instruments (Chicago, IL). Serum leptin levels were determined by immunoassays with the use of a commercial kit (Linco Research, Inc., St. Charles, MO).

Serum FSH and LH concentrations were assayed using a microparticle enzyme immunoassay on an AxSYM system (Abbott Diagnostics). Serum TSH levels were measured with a two-site chemiluminescent immunometric assay on DPC Immulite 200 equipment (Diagnostic Products Corp., Los Angeles, CA). Serum T4, T3, and T3-binding globulin, and cortisol levels were also determined via competitive immunoassays, namely via chemiluminescent immunometric assay on DPC Immulite 200 equipment (Diagnostic Products Corp.). Free T4 was measured with an electrochemiluminescent competitive immunoassay on Elecsys 2010 equipment (Roche). For rT3 determination, an RIA developed by the Mayo Medical Laboratories (Rochester, MN) was used.

A combined TRH and GnRH test was performed after an overnight fast and before administration of any medication. Protirelin [7 µg/kg; maximum, 500 µg; Ferring Pharmaceuticals Ltd. (Tarrytown, NY) and Taylor Pharmaceuticals (Decatur, IL)] and gonadorelin (100 µg; Factrel, Ayerst Pharmaceuticals, Philadelphia, PA) were administered iv boluses. Blood samples were drawn at −15, 0, 5, 15, 30, 60, 120, and 180 min for FSH, LH, and TSH determinations and at 0 and 180 min for T3 and T4 determinations.

Procedures

During each visit the resting metabolic rate was measured by metabolic cart (Delatrac equipment, Sensormedics, Yorba Linda, CA), between 0600—0800 h while patients rested after an overnight fast of more than 8 h. Each patient underwent a 3-h oral glucose tolerance test in which 1.75 g/kg dextrose oral solution (75 g/300 ml) were administered orally. A high dose insulin tolerance test was performed with the use of 0.2 U regular insulin/kg to assess the siblings’ sensitivity to insulin.

Body fat was determined using a dual energy x-ray absorptiometer (model QDR 4500, Hologic, Bedford, MA) (8). Axial T1-weighted magnetic resonance imaging of the liver was performed with the use of a 1.5-T scanner (General Electric Medical Systems, Milwaukee, WI) Liver volumes were calculated with the use of the MEDx image analysis software package (Sensor Systems, Sterling, VA).

Before their baseline and 4 month admissions, subjects, with the assistance of their parents, kept 5- to 7-d food records. These records were reviewed for accuracy and completeness with the children and their mother by a research dietitian. Nutrient calculations were performed using the Nutrition Data System for Research software versions 4.03 and 4.04, developed by the Nutrition Coordinating Center, University of Minnesota (Minneapolis, MN; Food and Nutrient Databases 31 and 32) (9).

Results

Baseline characteristics

Both siblings demonstrated the phenotypic features of RM syndrome, with severe hirsutism and acanthosis nigricans (Fig. 1), and the characteristic growth retardation of this syndrome (Fig. 2). Serum leptin levels were appropriate for fat mass. Patients had low normal serum triglyceride levels and no evidence of hepatic enlargement. They were diabetic and had marked hyperinsulinemia (Table 1).

Response of metabolic parameters to leptin therapy

The r-metHuLeptin was administered in gradually increasing doses that remained stable from the sixth to the 10th month. After 10 months of r-metHuLeptin therapy, the overnight fasting leptin concentration increased from 4.5–8.3...
ng/ml in the female subject and from 3.4–5.7 ng/ml in the male; fasting blood glucose fell by 40% in the female and by 60% in the male from their baseline levels. This improvement in fasting hyperglycemia in the male occurred despite reducing his daily dose of insulin by one third, from 300–200 U/d. Both children exhibited an overall reduction of percent glycosylated hemoglobin and a reduction of fasting insulin levels. The fasting insulin level decreased by 80% in the female patient, who was not receiving exogenous insulin. All of these values returned to or exceeded the original baseline values after r-metHuLeptin withdrawal (Table 2).

A 1.75 g/kg oral glucose tolerance test demonstrated the basal glucose levels of both patients to be decreased after 10 months of therapy, but both patients still had abnormal glucose tolerance. Further insulin values were decreased at all time points in the female patient after 10 months of therapy (Fig. 3). During a 30-min insulin tolerance test, the average

TABLE 1. Baseline metabolic parameters

<table>
<thead>
<tr>
<th></th>
<th>Age (yr)</th>
<th>Height (cm)</th>
<th>Weight (kg)</th>
<th>Leptin (ng/ml)</th>
<th>Insulin (µU/ml)</th>
<th>Glucose (mg/dl)</th>
<th>TG (mg/dl)</th>
<th>Hyperglycemic therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>11</td>
<td>129</td>
<td>22</td>
<td>4.5</td>
<td>194</td>
<td>153</td>
<td>33</td>
<td>Metformin (200 mg QD)</td>
</tr>
<tr>
<td>Male</td>
<td>13</td>
<td>124</td>
<td>23</td>
<td>3.4</td>
<td>268</td>
<td>224</td>
<td>42</td>
<td>Rosiglitazone (2 mg QD)</td>
</tr>
</tbody>
</table>

To convert to SI units: insulin, multiply by 6.945 to obtain picomoles per liter; glucose, multiply by 0.0555 to obtain millimoles per liter; triglycerides (TG), multiply by 0.0113 to obtain millimoles per liter. QD, Daily.
reduction in serum glucose was approximately 40% after the injection of 0.2 U/kg insulin in the two children compared with their baseline data after 10 months of r-metHuLeptin therapy. Again, the values for glucose during the insulin tolerance test returned to or exceeded the original baseline after leptin withdrawal.

FIG. 2. Continued

![Graph showing growth and development](image)

TABLE 2. Fasting metabolic changes during leptin therapy

<table>
<thead>
<tr>
<th></th>
<th>Female patient</th>
<th></th>
<th>Male patient</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preleptin therapy</td>
<td>During therapy</td>
<td>3 months off therapy</td>
<td>Preleptin therapy</td>
</tr>
<tr>
<td>Leptin (ng/ml)</td>
<td>4.5</td>
<td>8.3</td>
<td>4.3</td>
<td>3.4</td>
</tr>
<tr>
<td>Insulin (μU/ml)</td>
<td>194</td>
<td>39</td>
<td>289</td>
<td>268<sup>a</sup></td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>153</td>
<td>91</td>
<td>204</td>
<td>231</td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>33</td>
<td>67</td>
<td>71</td>
<td>42</td>
</tr>
<tr>
<td>HgbA<sub>1c</sub> (%)</td>
<td>9.2</td>
<td>8.3</td>
<td>8.9</td>
<td>9.6</td>
</tr>
</tbody>
</table>

To convert to SI units: insulin, multiply by 6.945 to obtain picomoles per liter; glucose, multiply by 0.0555 to obtain millimoles per liter; triglyceride, multiply by 0.0113 to obtain millimoles per liter. HgbA_{1c}, Glycosylated hemoglobin.

^a The male patient is taking 300 U insulin per day.

^b The male patient is taking 200 U insulin per day.

Growth and development after leptin therapy

At baseline both children had marked growth retardation, which is characteristic of this syndrome (Fig. 2). They both continued to grow at a rate below the third percentile after leptin administration. There was no loss of weight or lean
body mass after leptin therapy, but there was a decrease in percent body fat during leptin therapy (Table 3). The average caloric intake for each sibling decreased approximately 200 kcal/d during therapy, from 1326 to 1227 kcal in the male sibling and from 1718 to 1528 kcal in the female sibling. Consistent with lean body mass, resting energy expenditure remained stable during leptin therapy (Table 3).

TABLE 3. Body composition during leptin therapy

<table>
<thead>
<tr>
<th></th>
<th>Female patient</th>
<th>Male patient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preleptin therapy</td>
<td>During therapy</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>128</td>
<td>130</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>22</td>
<td>21.5</td>
</tr>
<tr>
<td>Fat g (subtotal)</td>
<td>3382</td>
<td>2719</td>
</tr>
<tr>
<td>Lean g (subtotal)</td>
<td>15619</td>
<td>15748</td>
</tr>
<tr>
<td>Respiratory quotient</td>
<td>0.8</td>
<td>0.83</td>
</tr>
<tr>
<td>REE (kcal/24 h)</td>
<td>1100</td>
<td>1000</td>
</tr>
<tr>
<td>% Fat (subtotal)</td>
<td>17.4</td>
<td>14.4</td>
</tr>
</tbody>
</table>

REE, Resting energy expenditure.

Hypothalamic-pituitary function

At baseline the male subject had a normal response to GnRH, consistent with normal pubertal development, whereas the younger female sibling had no response to GnRH at baseline or at 4 months of leptin therapy (Fig. 4). This is consistent with the theory that leptin is permissive for these responses when puberty is already in progress, but that leptin does not induce puberty per se. Thyroid and adrenal function were normal and unaffected by leptin therapy (data not shown).

Discussion

In the present study we have shown that pharmacological doses of leptin administered to two siblings with RM syndrome results in improvement of fasting hyperglycemia, hyperinsulinemia, glucose, and insulin tolerance. These children had normal baseline leptin concentrations for their percent body fat. We interpret these clinical changes as being consistent with decreased insulin resistance. The metabolic improvements are similar to improvements that have been seen in leptin-deficient, lipodystrophic patients (5). In these lipodystrophic patients, the clinical improvement has corresponded to increased insulin sensitivity measured by the euglycemic clamp (6).

Several caveats of the study are important to note. Although the patients had extreme insulin resistance and were similar to other patients who have been proven to have mutations in the insulin receptor (1–4, 7), molecular genetic analyses of these two patients have not been performed.
but leptin does not induce puberty (11).

The improvement in glucose and insulin parameters shown here is similar to that seen in lipodystrophic patients with one major difference. In lipodystrophy, hypertriglyceridemia is a major abnormality, and reduction in triglycerides is one of the major effects of leptin therapy. In these two siblings, triglyceride levels were normal or low, and there was no effect of r-metHuLeptin therapy.

Several other comparisons are of interest. In contrast to our previous observations (12), leptin appears permissive for gonadotropin secretion once puberty occurs, but leptin does not induce puberty per se, in humans, nor does r-metHuLeptin therapy have any effect on thyroid or adrenal function as seen in rodents (13).

The mechanism by which leptin improves insulin sensitivity in our patients is unclear. In rodent models several mechanisms could be relevant. This includes the activation of 5’-AMP kinase, which will increase insulin sensitivity (14). Further, it is possible that there could be an effect on an insulin receptor substrate, such as insulin receptor substrate-2, that could be affected by leptin therapy directly or indirectly by decreasing endogenous hyperinsulinemia (15). As there is no effect on serum lipids in these patients, it is unlikely that the stearoyl desaturase pathway is being influenced by leptin therapy as in lipodystrophy (16). Unlike lipodystrophic human syndromes, which have excellent rodent models, there are no clear rodent models for the RM syndrome (17).

Longo et al. (18) report a progressive decline in insulin levels in the RM syndrome with increasing age of the patient. This progressive decline in insulin levels leads to worsening diabetes and diabetic ketoacidosis in these patients. During the 10 months of leptin therapy it has been shown that the two subjects had a progressive decline in their insulin levels. However, these insulin levels increased to preleptin therapy levels or higher when checked at 3 months off treatment for the female and the male patient.

Most importantly, at the clinical level, these children were taking significant amounts of insulin-sensitizing medications at baseline; the male child was taking at least 13 times the usual replacement dose of insulin. Against this background, leptin therapy has produced the most significant clinical improvement that we have seen in these extremely insulin-resistant children. Whether leptin therapy will improve the grim prognosis for these children remains to be seen.

Acknowledgments

Received November 11, 2003. Accepted January 15, 2004.

Address all correspondence and requests for reprints to: Elaine Cochran, CRNP, Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 8D20, Bethesda, Maryland 20892. E-mail: elaine@intra.niddk.nih.gov.

References